Function approximation using "A Novel Adaptive Kernel for the RBF Neural Networks"
This submission is a part of a paper titled as "A Novel Adaptive Kernel for the RBF Neural Networks" [1]. In this simulation I implemented function approximation problem. Function approximation problem is similar to the regression problem. Here in this case I used two input single output case, it can be easily extended to higher values.
Please Cite
[1] Khan, S., Naseem, I., Togneri, R. et al. Circuits Syst Signal Process (2017) 36: 1639. doi:10.1007/s00034-016-0375-7
https://link.springer.com/article/10.1007/s00034-016-0375-7
Citar como
Shujaat Khan (2026). Function approximation using "A Novel Adaptive Kernel for the RBF Neural Networks" (https://es.mathworks.com/matlabcentral/fileexchange/65709-function-approximation-using-a-novel-adaptive-kernel-for-the-rbf-neural-networks), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
Etiquetas
Agradecimientos
Inspirado por: Radial Basis Function with K Mean Clustering, Adaptive Fusion of Kernels for Radial Basis Function Neural Network, Adaptive Novel Kernel for RBF Neural Networks (Pattern Classification Problem)
Inspiración para: Mackey Glass Time Series Prediction using Radial Basis Function (RBF) Neural Network, Nonlinear System Identification using RBF Neural Network
Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
Simplified/html/
| Versión | Publicado | Notas de la versión | |
|---|---|---|---|
| 1.0.0.0 |
- Display picture
|
