System Identification Using LMS Algorithm and Huber Cost Function Minimization

Modelling a FIR Filter using LMS Algorithm and, Huber's Cost Function for presence of outliers
116 Descargas
Actualizado 15 feb 2018

Ver licencia

Modelling a FIR Filter using LMS Algorithm and, Huber's Cost Function Minimization for presence of a certain percentage of outliers.
Here we have to identify and model a 3-tap FIR filter with weights [0.26 0.93 0.26].
This has to be done using:
1) Mean Square error minimization (LMS Algorithm)-
The reference signal is corrupted by additive white gaussian noise (mean=0, standard deviation=0.1)
2) Huber Loss Minimization (with 10 to 20 percent outlier added to the noise)
The reference signal is corrupted by additive white gaussian noise (mean=0, standard deviation=0.05)

Citar como

Sambit Behura (2026). System Identification Using LMS Algorithm and Huber Cost Function Minimization (https://es.mathworks.com/matlabcentral/fileexchange/65901-system-identification-using-lms-algorithm-and-huber-cost-function-minimization), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2017a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Versión Publicado Notas de la versión
1.0.0.0

Problem Statement Updated

Problem Statement Updated