PCA-based Fault Detection for 2D Multivariate Process Data
% PCA-based Fault Detection
%
% Inputs: z0 [N x 2] = training data
% z1 [N x 2] = test data
% where: N = number of samples
%
% This code visualizes how PCA can account
% for multivariate data in fault detection.
% It also uses MATLAB's ksdensity for
% estimating the data PDF, so as to compute
% a T^2-based upper control limit.
%
% simpledata.mat has sample temperature [K]
% and concentration [mol/L] data from
% the contents of a simulated CSTR.
%
% The output are plots of the raw data,
% normalized data, and PCA projected data.
% Also, rings representing the T^2-based
% upper control limits at different user-
% defined confidence levels are plotted.
%
% You can edit confidence limits at Line 77.
%
% This code is intended for educational purposes.
%
% Load simpledata.mat and run the following:
% >> pcabased_fault_detection(train,test)
Citar como
Karl Ezra Pilario (2024). PCA-based Fault Detection for 2D Multivariate Process Data (https://www.mathworks.com/matlabcentral/fileexchange/65983-pca-based-fault-detection-for-2d-multivariate-process-data), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
Etiquetas
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
Versión | Publicado | Notas de la versión | |
---|---|---|---|
1.0.0.0 |