Image classification using data augmentation
A simple example of a four-class image classifier using a small dataset (320 images of flowers: 80 sample x 4 categories) and a very simple CNN, with and without data augmentation.
The main goal of this example is to demonstrate the use of the MATLAB functionality for data augmentation in image classification solutions: the augmentedImageDatastore and the imageDataAugmenter.
This example should be easy to modify and expand to the user's needs.
Notes:
- The validation accuracy improves -- from ~79% (Part 1 in the code) to ~83% (Part 2) -- using a very simple CNN, as a result of data augmentation alone.
- Interestingly enough, using a pretrained AlexNet, the validation accuracy drops -- from 100% (Part 3) to ~98% (Part 4) -- which shows that data augmentation wouldn't be necessary in this case.
Citar como
Oge Marques (2025). Image classification using data augmentation (https://www.mathworks.com/matlabcentral/fileexchange/68728-image-classification-using-data-augmentation), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
Etiquetas
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.