Clustering Function Based on K Nearest Neighbors

Finds clusters in set of observations based on their numerical attributes. Uses a variation of an graph theoretic algorithm,
266 Descargas
Actualizado 11 sep 2018

Ver licencia

This function is similar to the graph theoretic clustering function that I submitted previously (https://www.mathworks.com/matlabcentral/fileexchange/57320-clustering-algorithm-based-on-directed-graphs). The input is an observation/attribute matrix and an integer K that specifies the number of nearest neighbors for each observation. The algorithm first finds the K nearest neighbors of each observation and then a parent for each observation. The parent is the observation among the K+1 whose Kth nearest neighbor is the nearest (check the code for a more precise specification). As in the previous function, orphans become the roots of clusters and the remaining nodes are assigned recursively to the cluster of their parent.

Citar como

Warren Koontz (2026). Clustering Function Based on K Nearest Neighbors (https://es.mathworks.com/matlabcentral/fileexchange/68778-clustering-function-based-on-k-nearest-neighbors), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2018a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Statistics and Machine Learning Toolbox en Help Center y MATLAB Answers.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.0.0