TimeTabling-GeneticAlgorithm

A genetic Algorithm Solution for Weekly Course Timetabling Problem
385 Descargas
Actualizado 19 sep 2018

Genetic Algorithms are the method for finding enough good solutions for the problems which cannot be solved by a standard method named NP-Hard problems. Although it does not guaranty the best solution, we can find relatively enough good solutions for most engineering problems within that method [1].

Educational institutes such as high schools universities use weekly course timetabling to use all sources in an optimum way. To make an optimum weekly timetable is such an example of NP-Hard problem which cannot be solved in any brutal force method which checks every single probability.

In this repository, we provided a solution to that problem using Genetic Algorithm which tries to minimize determined fitness function which that function is a sort of measurement of how the timetable is optimum [2].

Citar como

muhammet balcilar (2025). TimeTabling-GeneticAlgorithm (https://github.com/balcilar/TimeTabling-GeneticAlgorithm), GitHub. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2016b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Statistics and Machine Learning Toolbox en Help Center y MATLAB Answers.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

No se pueden descargar versiones que utilicen la rama predeterminada de GitHub

Versión Publicado Notas de la versión
1.0.0

Para consultar o notificar algún problema sobre este complemento de GitHub, visite el repositorio de GitHub.
Para consultar o notificar algún problema sobre este complemento de GitHub, visite el repositorio de GitHub.