Deep Learning ToolboxTM Model for ShuffleNet Network

Pretrained ShuffleNet model for image classification
1,6K descargas
Actualizado 19 jun 2024
ShuffleNet is a pretrained model that has been trained on a subset of the ImageNet database. The model is trained on more than a million images and can classify images into 1000 object categories (e.g. keyboard, mouse, pencil, and many animals).
Opening the shufflenet.mlpkginstall file from your operating system or from within MATLAB will initiate the installation process for the release you have.
This mlpkginstall file is functional for R2019a and beyond. Use shufflenet instead of imagePretrainedNetwork if using a release prior to R2024a.
Usage Example:
% Access the trained model
[net, classes] = imagePretrainedNetwork("shufflenet");
% See details of the architecture
net.Layers
% Read the image to classify
I = imread('peppers.png');
% Adjust size of the image
sz = net.Layers(1).InputSize
I = I(1:sz(1),1:sz(2),1:sz(3));
% Classify the image using ShuffleNet
scores = predict(net, single(I));
label = scores2label(scores, classes)
% Show the image and the classification results
figure
imshow(I)
text(10,20,char(label),'Color','white')
Compatibilidad con la versión de MATLAB
Se creó con R2019a
Compatible con cualquier versión desde R2019a hasta R2024b
Compatibilidad con las plataformas
Windows macOS (Apple Silicon) macOS (Intel) Linux
Categorías
Más información sobre Deep Learning Toolbox en Help Center y MATLAB Answers.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!