Simple Deep Learning Algorithms with K-fold Cross-Validation

Versión 1.1 (4,28 KB) por Jingwei Too
This toolbox offers convolution neural networks (CNN) using k-fold cross-validation, which are simple and easy to implement.
3,3K Descargas
Actualizado 20 dic 2020

Jx-DLT : Deep Learning Toolbox

* This toolbox contains the convolution neural network (CNN)

* The < Main.m file > shows examples of how to use CNN programs with the benchmark data set. Note we demo the CNN using one to three convolution layers setup.

* Detail of this toolbox can be found at https://github.com/JingweiToo/Deep-Learning-Toolbox

**********************************************************************************************************************************

Citar como

Too, Jingwei, et al. “Featureless EMG Pattern Recognition Based on Convolutional Neural Network.” Indonesian Journal of Electrical Engineering and Computer Science, vol. 14, no. 3, Institute of Advanced Engineering and Science, June 2019, p. 1291, doi:10.11591/ijeecs.v14.i3.pp1291-1297.

Compatibilidad con la versión de MATLAB
Se creó con R2018a
Compatible con cualquier versión desde R2017b
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y MATLAB Answers.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.1

See release notes for this release on GitHub: https://github.com/JingweiToo/Deep-Learning-Toolbox/releases/tag/1.1

1.0.2

-

1.0.1

-

1.0.0

Para consultar o notificar algún problema sobre este complemento de GitHub, visite el repositorio de GitHub.
Para consultar o notificar algún problema sobre este complemento de GitHub, visite el repositorio de GitHub.