RUL prediction (C-MAPSS dataset)

Dynamic Adaptation for Length Changeable Weighted Extreme Learning Machine
626 Descargas
Actualizado 16 dic 2019

Ver licencia

This work introduces a new improvements in LCI-ELM proposed in [1]. The new contributions focus on the adaptation of training model towards higher dimensional “time –varying “data. The proposed Algorithm is investigated using C-MAPSS dataset[2]. PSO[3] and R-ELM[4] training rules are integrated together for this mission.
The details of the proposed Algorithm and the user guide are available in : https://www.researchgate.net/publication/337945405_Dynamic_Adaptation_for_Length_Changeable_Weighted_Extreme_Learning_Machine

[1] Y. X. Wu, D. Liu, and H. Jiang, “Length-Changeable Incremental Extreme Learning Machine,” J. Comput. Sci. Technol., vol. 32, no. 3, pp. 630–643, 2017.
[2] A. Saxena, M. Ieee, K. Goebel, D. Simon, and N. Eklund, “Damage Propagation Modeling for Aircraft Engine Prognostics,” Response, 2008.
[3] M. N. Alam, “Codes in MATLAB for Particle Swarm Optimization Codes in MATLAB for Particle Swarm Optimization,” no. March, 2016.
[4] J. Cao, K. Zhang, M. Luo, C. Yin, and X. Lai, “Extreme learning machine and adaptive sparse representation for image classification,” Neural Networks, vol. 81, no. 61773019, pp. 91–102, 2016.

Citar como

BERGHOUT Tarek,Mouss Leila Hayet, Kadri Ouahab, "Dynamic Adaptation for Length Changeable Weighted Extreme Lerning Machine", (https://www.mathworks.com/matlabcentral/fileexchange/<...>), MATLAB Central File Exchange. Retrieved December 9, 2019.

Compatibilidad con la versión de MATLAB
Se creó con R2013b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Dimensionality Reduction and Feature Extraction en Help Center y MATLAB Answers.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.2.0

user guid link is added

1.1.0

changes int title .

1.0.0