Image Restoration
Basic Concept (SUMMARY)
1. Read an Input Image
2. Defining a Blurr Filter
3. Degrade the Image Quality by applying any filtering (eg Gaussian Blur, Motion Blur)
4. Addition of Minimal Random Noise to the degraded Image (using randn)
5. Computing DFT of Degraded Image
Steps (fft2, fftshift, log of absolute value for display)
6. Computing DFT of Filter (size equal to the image)
Steps (increase the size of filter, ifftshift, fft2, fftshift, log of absolute value for display)
7. Applying the REQUISITE METHOD FOR IMAGE RESTORATION
8. Display the Restored Image in Spatial Domain
Citar como
RFM (2026). Image Restoration (https://es.mathworks.com/matlabcentral/fileexchange/73891-image-restoration), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
- Image Processing and Computer Vision > Image Processing Toolbox > Image Filtering and Enhancement > Deblurring >
Etiquetas
Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
| Versión | Publicado | Notas de la versión | |
|---|---|---|---|
| 1.0.0 |
