Feature Selection Using BMNABC
Versión 1.0.11 (1,52 MB) por
Zahra Beheshti
This folder contains an implementation for the feature selection problem using Binary Multi-Neighborhood Artificial Bee Colony (BMNABC).
The feature selection (feature subset selection) problem is one of the important pre-processing phases in various areas . In real datasets, many irrelevant, misleading and redundant features exist that are useless. Main features can be extracted by feature selection technique. The feature selection is in the class of NP-hard problems; therefore, meta-heuristic algorithms are useful to solve the problem. A new binary ABC called binary multi-neighborhood artificial bee colony (BMNABC) has been introduced to enhance the exploration and exploitation abilities in the phases of ABC. BMNABC applies the near and far neighborhood information with a new probability function in the first and second phases. A more conscious search than the standard ABC is done in the third phase for those solutions which have been not improved in the previous phases. The algorithm can be combined with the wrapper approach to achieve the best results.
Citar como
Zahra Beheshti (2026). Feature Selection Using BMNABC (https://es.mathworks.com/matlabcentral/fileexchange/74367-feature-selection-using-bmnabc), MATLAB Central File Exchange. Recuperado .
Z. Beheshti, BMNABC: Binary Multi-Neighborhood Artificial Bee Colony for High-Dimensional Discrete Optimization Problems, Cybern. Syst. 49 (2018) 452–474.
Compatibilidad con la versión de MATLAB
Se creó con
R2019b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
- Mathematics and Optimization > Global Optimization Toolbox > Particle Swarm >
- Sciences > Food Sciences >
Más información sobre Particle Swarm en Help Center y MATLAB Answers.
Etiquetas
Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
