Sequential Minimal Optimization (SMO) for SVR

SVR_SMO Create SVR model with SMO solver and different Kernels (linear, rbf, polynomial, sigmoid)
231 Descargas
Actualizado 1 sep 2020

Ver licencia

Run the example in file svr_test.m
SVR_SMO Create SVR model with SMO solver
vectors x(mx1), y(mx1) correspond to the set of points which y = f(x)
is a real function of the x real values. The SMO solver uses the
constants C, tol(tolerance), eps (epsilon), T (max.Iter). The choice of
the kernel is defined in type ('l' for linear, 'r for rbf, 'p' for
polynomial and 's' forsigmoid). Depending on the choice of kernel the
additionnalparameter will be used (gamma, offset and power).
The training result will be given as the alpha coefficients and the b
threshold.

Implementation from: Flake, Gary William, and Steve Lawrence. "Efficient
SVM regression training with SMO." Machine Learning 46, no.1-3 (2002): 271-290.

Citar como

Ivan Tinjaca (2026). Sequential Minimal Optimization (SMO) for SVR (https://es.mathworks.com/matlabcentral/fileexchange/79790-sequential-minimal-optimization-smo-for-svr), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2020a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Versión Publicado Notas de la versión
1.0.0