Multi-Objective Jellyfish Search (MOJS) Algorithm
This study develops a Multi-Objective Jellyfish Search (MOJS) algorithm to solve engineering problems optimally with multiple objectives. Lévy flight, elite population, fixed-size archive, chaotic map, and the opposition-based jumping method are integrated into the MOJS to obtain the Pareto optimal solutions. These techniques are employed to define the motions of jellyfish in an ocean current or a swarm in multi-objective search spaces.
Citar como
Chou, Jui-Sheng, and Dinh-Nhat Truong. “Multiobjective Optimization Inspired by Behavior of Jellyfish for Solving Structural Design Problems.” Chaos, Solitons & Fractals, vol. 135, Elsevier BV, June 2020, p. 109738, doi:10.1016/j.chaos.2020.109738.
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxEtiquetas
Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
| Versión | Publicado | Notas de la versión | |
|---|---|---|---|
| 1.0.0 |
