Easy build compact schemes

A Taylor-Table-Algorithm is presented to automate the computation of weights for centered/biased compact FDM schemes.
37 Descargas
Actualizado 14 abr 2021

Ver licencia

Here, we present a new algorithm that systematically solves the Taylor expansion coefficients problem for constructing implicit (compact) finite-difference schemes.
Although it is presented to construct up to 3rd-order differential compact schemes, we believe it is simple enough, so that users can easily extend it to obtain even higher-order schemes if necessary.

Also, we provide two examples:
The first example, demonstrates how to use the Taylor Table algorithm to recover well-known schemes in the literature. The second example, shows how to set a central compact scheme and complement it with suitable boundaries schemes. So that a (sparse) differential operator can be easily constructed ;)

Future work: In an expansion of these snippets I'll soon introduce a simple way to create 2D and 3D differential operators suitable for solving PDEs in Matlab ~stay tuned !

-M. Diaz

Happy coding !

Citar como

Manuel A. Diaz (2024). Easy build compact schemes (https://www.mathworks.com/matlabcentral/fileexchange/90506-easy-build-compact-schemes), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2019b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.0.0