Alpha Vantage data downloader
Versión 0.11 (15,7 MB) por
Artem Lensky
Currently the toolbox implements functions to download company fundamentals and economic indicators.
alphavantage-matlab
Donwload cashflow reports
% replace the "demo" apikey below with your own key from https://www.alphavantage.co/support/#api-key
keyAV = "demo";
symbols = ["TSLA","XPEV", "NIO"]; % Define symbols of interest
cashflowReports = getFundamentals(symbols, "CASH_FLOW", keyAV); % Donwload reports
% convert company reports to a single table
cashflowTable = extractFields(cashflowReports, ["CASH_FLOW", "quarterlyReport"]);
Predict selected cashflow indicators
% Variables to predict
indicatorsOfInterest = [ "operatingCashflow",...
"changeInInventory",...
"netIncome"];
for k = 1:length(symbols)
% Retrieve records for a specific ticker
reportPerCompany = findbyValue(cashflowTable, "Symbol", symbols{k});
% preprocess
options = struct("extrapolate", "linear",...
"removeMissingBy", "column",...
"toCategorical", "",...
"removeColumns", ["reportedCurrency", "Symbol",...
"proceedsFromIssuanceOfCommonStock"]);
reportPerCompanyProcessed = preprocess(reportPerCompany, options);
rawData = reportPerCompanyProcessed(:, indicatorsOfInterest).Variables;
Mdl = varm(length(indicatorsOfInterest), 2);
%Mdl.Trend = NaN; % Estimate trend
[normData, means, stds] = normalize(rawData); % normalise the data
EstMdl = estimate(Mdl, normData);
numOfQs = 4; % Forecast numOfQs quarters
futureDates = dateshift(reportPerCompanyProcessed.fiscalDateEnding(end)...
,'end','quarter', 1:numOfQs); % Dates to predict
futureSim = simulate(EstMdl, numOfQs,'Y0', normData,'NumPaths',2000);
futureSim = (futureSim .* stds) + means; % Denormalise
futureSimMean = mean(futureSim, 3); % Calculate means
futureSimStd = std(futureSim, 0, 3); % Calculate std deviations
% Plot the predictions
figure('color', 'white', 'position', [0, 0, 400, 800]), hold('on');
for l = 1:length(varsOfInterest)
subplot(length(varsOfInterest),1, l), hold on
plot(reportPerCompanyProcessed.fiscalDateEnding, rawData(:,l),'k', 'LineWidth', 3);
plot([reportPerCompanyProcessed.fiscalDateEnding(end) futureDates],...
[rawData(end,l); futureSimMean(:, l)],'r', 'LineWidth', 3)
plot([reportPerCompanyProcessed.fiscalDateEnding(end) futureDates],...
[rawData(end,l); futureSimMean(:, l)] + [0; futureSimStd(:, l)],'b', 'LineWidth', 3)
plot([reportPerCompanyProcessed.fiscalDateEnding(end) futureDates],...
[rawData(end,l); futureSimMean(:, l)] - [0; futureSimStd(:, l)],'b', 'LineWidth', 3);
title(varsOfInterest{l});
end
sgtitle(symbols{k});
end
Download Economic Indicators
treasury_yield_3month = getEconomicIndicators("TREASURY_YIELD", keyAV, struct("interval", "daily", "maturity", "3month"));
treasury_yield_5year = getEconomicIndicators("TREASURY_YIELD", keyAV, struct("interval", "daily", "maturity", "5year"));
treasury_yield_10year = getEconomicIndicators("TREASURY_YIELD", keyAV, struct("interval", "daily", "maturity", "10year"));
Plot economic indicators
figure('color', 'white'), hold on;
plot(treasury_yield_3month.data.date,treasury_yield_3month.data.value, 'LineWidth', 2);
plot(treasury_yield_5year.data.date, treasury_yield_5year.data.value, 'LineWidth', 2);
plot(treasury_yield_10year.data.date,treasury_yield_10year.data.value, 'LineWidth', 2);
xlabel('date'), ylabel('percent');
title('Treasury yields');
legend({'3 month', '5 year', '10 year'});
Donwload SnP500
snp500list = readtable("snp500list.csv");
load reports.mat % comment this line to donwload the data
%reports = getFundamentals(snp500list.Symbol, "ALL", keyAV); % uncomment
Summary of SnP500
% preprocess
overviewTable = extractFields(reports, "OVERVIEW");
sectorsLabels = unique(overviewTable.Sector);
removeColumns = ["Symbol","AssetType", "Name", "Description", "Currency",...
"Country","Industry", "Address", "FiscalYearEnd",...
"LatestQuarter", "DividendDate", "ExDividendDate",...
"LastSplitDate"];
options = struct("extrapolate", "linear",...
"removeMissingBy", "row",...
"toCategorical", ["Exchange", "Sector"],...
"removeColumns", removeColumns);
[overviewTableTirm, ind] = preprocess(overviewTable, options);
sectors = unique(overviewTableTirm.Sector);
% plot pie chart
colors = lines(length(sectorsLabels));
figure('color', 'white', 'Position', [1, 1, 800, 600]),
p = subplot(2,2,[1,3]); pie(histcounts(overviewTableTirm.Sector));p.Colormap = lines(7);
lgnd = legend(sectorsLabels, 'Location', 'northoutside'); title(lgnd, 'SnP500');
% plot distributions of selected indicators per sector
colName = {'Beta', 'DividendYield'};
for l = 1:2
subplot(2,2,2*l), hold on,
for k = 1:size(sectors,1)
overviewPerSector{k} = findbyValue(overviewTableTirm, "Sector", sectors(k));
[m, x] = ksdensity(overviewPerSector{k}.(colName{l}), 'Kernel', 'epanechnikov');
plot(x, m,'color', colors(k, :), 'linewidth', 5)
area(x, m, 'FaceColor', colors(k, :), 'FaceAlpha', 0.2);
title(colName{l});
end
end
Citar como
Artem Lensky (2024). Alpha Vantage data downloader (https://github.com/Lenskiy/alphavantage-matlab/releases/tag/v0.11), GitHub. Recuperado .
Compatibilidad con la versión de MATLAB
Se creó con
R2021a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS LinuxEtiquetas
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
Versión | Publicado | Notas de la versión | |
---|---|---|---|
0.11 |
Para consultar o notificar algún problema sobre este complemento de GitHub, visite el repositorio de GitHub.
Para consultar o notificar algún problema sobre este complemento de GitHub, visite el repositorio de GitHub.