Main Content

6DOF (Euler Angles)

Implement Euler angle representation of six-degrees-of-freedom equations of motion

  • 6DOF (Euler Angles) block

Libraries:
Aerospace Blockset / Equations of Motion / 6DOF

Alternative Configurations of 6DOF (Euler Angles) Block:
Simple Variable Mass 6DOF (Euler Angles) | Custom Variable Mass 6DOF (Euler Angles)

Description

The 6DOF (Euler Angles) block implements the Euler angle representation of six-degrees-of-freedom equations of motion, taking into consideration the rotation of a body-fixed coordinate frame (Xb, Yb, Zb) about a flat Earth reference frame (Xe, Ye, Ze). For more information about these reference points, see Algorithms.

The 6DOF (Euler Angles), Simple Variable Mass 6DOF (Euler Angles), and Custom Variable Mass 6DOF (Euler Angles) blocks are alternative configurations of the same block.

  • 6DOF (Euler Angles) — Implement Euler angle representation of six-degrees-of-freedom equations of motion

  • Simple Variable Mass 6DOF (Euler Angles) — Implement Euler angle representation of six-degrees-of-freedom equations of motion of simple variable mass

  • Custom Variable Mass 6DOF (Euler Angles) — Implement Euler angle representation of six-degrees-of-freedom equations of motion of custom variable mass

Limitations

The block assumes that the applied forces act at the center of gravity of the body, and that the mass and inertia are constant.

Ports

Input

expand all

Applied forces, specified as a three-element vector in body-fixed axes. For more information on the frame, see Body Coordinates.

Data Types: double

Applied moments, specified as a three-element vector in body-fixed axes. For more information on the frame, see Body Coordinates.

Data Types: double

Output

expand all

Velocity in the flat Earth reference frame, returned as a three-element vector.

Data Types: double

Position in the flat Earth reference frame, returned as a three-element vector.

Data Types: double

Euler rotation angles [roll, pitch, yaw] defining an intrinsic x-y-z rotation, as a three-element vector, in radians. Yaw, pitch, and roll angles are applied using the z-y-x rotation sequence, such as angle2dcm(yaw,pitch,roll,"ZYX").

Data Types: double

Coordinate transformation from flat Earth axes to body-fixed axes, returned as a 3-by-3 matrix.

Data Types: double

Velocity in the body-fixed frame, returned as a three-element vector.

Data Types: double

Angular rates in body-fixed axes, returned as a three-element vector, in radians per second.

Data Types: double

Mass, returned as a scalar.

Dependencies

To enable this port, select the Output mass properties for acceleration computation parameter.

Data Types: double

Inertia tensor matrix, returned as a 3-by-3 matrix.

Dependencies

To enable this port, select the Output mass properties for acceleration computation parameter.

Data Types: double

Parameters

expand all

Main

Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English (Velocity in kts).

UnitsForcesMomentAccelerationVelocityPositionMassInertia
Metric (MKS) NewtonNewton-meterMeters per second squaredMeters per secondMetersKilogramKilogram meter squared
English (Velocity in ft/s) PoundFoot-poundFeet per second squaredFeet per secondFeetSlugSlug foot squared
English (Velocity in kts) PoundFoot-poundFeet per second squaredKnotsFeetSlugSlug foot squared

Programmatic Use

Block Parameter: units
Type: character vector
Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Mass type, specified according to the following table.

The Simple Variable selection conforms to the previously described equations of motion.

Programmatic Use

Block Parameter: mtype
Type: character vector
Values: Fixed | Simple Variable | Custom Variable
Default: 'Fixed'

Initial location of the body in the flat Earth reference frame, specified as a three-element vector.

Programmatic Use

Block Parameter: xme_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial velocity in body axes, specified as a three-element vector, in the body-fixed coordinate frame.

Programmatic Use

Block Parameter: Vm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial Euler orientation angles [roll, pitch, yaw], specified as a three-element vector, in radians. Euler rotation angles are those between the body and north-east-down (NED) coordinate systems.

Programmatic Use

Block Parameter: eul_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial body-fixed angular rates with respect to the NED frame, specified as a three-element vector, in radians per second.

Programmatic Use

Block Parameter: pm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial mass of the rigid body, specified as a double scalar.

Programmatic Use

Block Parameter: mass_0
Type: character vector
Values: '1.0' | double scalar
Default: '1.0'

Empty mass of the body, specified as a double scalar.

Programmatic Use

Block Parameter: mass_e
Type: character vector
Values: double scalar
Default: '0.5'

Full mass of the body, specified as a double scalar.

Programmatic Use

Block Parameter: mass_f
Type: character vector
Values: double scalar
Default: '2.0'

Inertia of the body, specified as a double scalar.

Dependencies

To enable this parameter, set Mass type to Fixed.

Programmatic Use

Block Parameter: inertia
Type: character vector
Values: eye(3) | double scalar
Default: eye(3)

Inertia tensor matrix for the empty inertia of the body, specified as 3-by-3 matrix.

Programmatic Use

Block Parameter: inertia_e
Type: character vector
Values: 'eye(3)' | 3-by-3 matrix
Default: 'eye(3)'

Inertia tensor matrix for the full inertia of the body, specified as 3-by-3 matrix.

Programmatic Use

Block Parameter: inertia_f
Type: character vector
Values: '2*eye(3)' | 3-by-3 matrix
Default: '2*eye(3)'

Select this check box to add a mass flow relative velocity port. This is the relative velocity at which the mass is accreted or ablated.

Programmatic Use

Block Parameter: vre_flag
Type: character vector
Values: off | on
Default: off

Select this check box to enable ports for mass properties for acceleration. You can then use these ports as inputs for these blocks:

  • 6DOF Accelerationm output port

  • 6DOF Angular AccelerationI and dI/dt coeff ports.

Programmatic Use

Block Parameter: mass_flag
Type: character vector
Values: 'off' | 'on'
Default: off

State Attributes

Assign unique name to each state. You can use state names instead of block paths during linearization.

  • To assign a name to a single state, enter a unique name between quotes, for example, 'velocity'.

  • To assign names to multiple states, enter a comma-delimited list surrounded by braces, for example, {'a', 'b', 'c'}. Each name must be unique.

  • If a parameter is empty (' '), no name assignment occurs.

  • The state names apply only to the selected block with the name parameter.

  • The number of states must divide evenly among the number of state names.

  • You can specify fewer names than states, but you cannot specify more names than states.

    For example, you can specify two names in a system with four states. The first name applies to the first two states and the second name to the last two states.

  • To assign state names with a variable in the MATLAB® workspace, enter the variable without quotes. A variable can be a character vector, cell array, or structure.

Velocity state names, specified as comma-separated list surrounded by braces.

Programmatic Use

Block Parameter: Vm_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Position state names, specified as a comma-separated list surrounded by braces.

Programmatic Use

Block Parameter: xme_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Body rotation rate state names, specified comma-separated list surrounded by braces.

Programmatic Use

Block Parameter: pm_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Euler rotation angle state names, specified as a comma-separated list surrounded by braces.

Programmatic Use

Block Parameter: eul_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Mass state name, specified as a character vector.

Programmatic Use

Block Parameter: mass_statename
Type: character vector
Values: '' | character vector
Default: ''

Alternative Configurations

expand all

The Simple Variable Mass 6DOF (Euler Angles) block implements the Euler angle representation of six-degrees-of-freedom equations of motion of simple variable mass. To enable this block, set Mass type to Simple Variable.

Libraries:
Aerospace Blockset / Equations of Motion / 6DOF

The Custom Variable Mass 6DOF (Euler Angles) block implements the Euler angle representation of six-degrees-of-freedom equations of motion of custom variable mass. To enable this block, set Mass type to Custom Variable.

Libraries:
Aerospace Blockset / Equations of Motion / 6DOF

Algorithms

The 6DOF (Euler Angles) block uses these reference frame concepts.

  • The origin of the body-fixed coordinate frame is the center of gravity of the body, and the body is assumed to be rigid, an assumption that eliminates the need to consider the forces acting between individual elements of mass.

    The flat Earth reference frame is considered inertial, an excellent approximation that allows the forces due to the Earth motion relative to the "fixed stars" to be neglected.

    Flat Earth Reference frame

  • Translational motion of the body-fixed coordinate frame, where the applied forces [Fx Fy Fz]T are in the body-fixed frame, and the mass of the body m is assumed constant.

    F¯b=[FxFyFz]=m(V¯˙b+ω¯×V¯b)Abb=[u˙bv˙bw˙b]=1mF¯bω¯×V¯bAbe=1mFbV¯b=[ubvbwb],ω¯=[pqr]

  • The rotational dynamics of the body-fixed frame, where the applied moments are [L M N]T, and the inertia tensor I is with respect to the origin O.

    M¯B=[LMN]=Iω¯˙+ω¯×(Iω¯)I=[IxxIxyIxzIyxIyyIyzIzxIzyIzz]

  • The relationship between the body-fixed angular velocity vector, [p q r]T, and the rate of change of the Euler angles, [ϕ˙θ˙ψ˙]T, are determined by resolving the Euler rates into the body-fixed coordinate frame.

    [pqr]=[ϕ˙00]+[1000cosϕsinϕ0sinϕcosϕ][0θ˙0]+[1000cosϕsinϕ0sinϕcosϕ][cosθ0sinθ010sinθ0cosθ][00ψ˙]J1[ϕ˙θ˙ψ˙]

    Inverting J then gives the required relationship to determine the Euler rate vector.

    [ϕ˙θ˙ψ˙]=J[pqr]=[1(sinϕtanθ)(cosϕtanθ)0cosϕsinϕ0sinϕcosθcosϕcosθ][pqr]

References

[1] Stevens, Brian, and Frank Lewis, Aircraft Control and Simulation. Hoboken, NJ: Second Edition, John Wiley & Sons, 2003.

[2] Zipfel, Peter H., Modeling and Simulation of Aerospace Vehicle Dynamics. Reston, Va: Second Edition, AIAA Education Series, 2007.

Extended Capabilities

expand all

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Version History

Introduced in R2006a

expand all