Main Content

Constellation Modeling with the Orbit Propagator Block

This example shows how to propagate the orbits of a constellation of satellites and compute and visualize access intervals between the individual satellites and several ground stations. It uses:

  • Aerospace Blockset™ Orbit Propagator block

  • Aerospace Toolbox satelliteScenario object

The Aerospace Toolbox satelliteScenario object lets you load previously generated, time-stamped ephemeris data into a scenario from a timeseries or timetable object. Data is interpolated in the scenario object to align with the scenario time steps, allowing you to incorporate data generated in a Simulink® model into either a new or existing satelliteScenario object. This example shows how to propagate a constellation of satellites in Simulink with the Aerospace Blockset Orbit Propagator block, and load the logged ephemeris data into a satelliteScenario object for access analysis.

Define Mission Parameters and Constellation Initial Conditions

Specify a start date and duration for the mission. This example uses MATLAB® structures to organize mission data. These structures make accessing data later in the example more intuitive. They also help declutter the global base workspace.

mission.StartDate = datetime(2020, 11, 30, 22, 23, 24);
mission.Duration  = hours(24);

The constellation in this example is a Walker-Delta constellation modeled similar to Galileo, the European GNSS (Global navigation satellite system) constellation. The constellation consists of 24 satellites in medium Earth orbit (MEO).

Walker-Delta constellations use the notation:

i:T/P/F

where

i= inclination

T= total number of satellites

P= number of equally space geometric planes

F= spacing between satellites in adjacent planes

Walker-Delta constellations are a common solution for maximizing geometric coverage over Earth while minimizing the number of satellites required to perform the mission. The Galileo navigation system is a Walker-Delta 56:24/3/1 constellation (24 satellites in 3 planes inclined at 56 degrees) in a 29599.8 km orbit.

Specify Keplerian orbital elements for the constellation at mission.StartDate.

mission.Satellites.SemiMajorAxis  = 29599.8e3 * ones(24,1); % meters
mission.Satellites.Eccentricity   = 0.0005    * ones(24,1);
mission.Satellites.Inclination    = 56        * ones(24,1); % deg
mission.Satellites.ArgOfPeriapsis = 350       * ones(24,1); % deg

The ascending nodes of the orbital planes of a Walker-Delta constellation are uniformly distributed at intervals of 360P around the equator. The number of satellites per plane, S, is given as S=TP. With 24 satellites total, this results in 3 planes of 8 satellites at 120 degree intervals around the equator. The satellites in each orbital plane are distributed at intervals of 360S, or 45 degrees.

mission.Satellites.RAAN               = sort(repmat([0 120 240], 1,8))'; % deg
mission.Satellites.TrueAnomaly        = repmat(0:45:315, 1,3)'; % deg

Lastly, account for the relative angular shift between adjacent orbital planes. The phase difference is given as Δϕ=F*360T, or 15 degrees in this case.

mission.Satellites.TrueAnomaly(9:16)  = mission.Satellites.TrueAnomaly(9:16)  + 15;
mission.Satellites.TrueAnomaly(17:24) = mission.Satellites.TrueAnomaly(17:24) + 30;

Show the constellation nodes in a table.

ConstellationDefinition = table(mission.Satellites.SemiMajorAxis, ...
    mission.Satellites.Eccentricity, ...
    mission.Satellites.Inclination, ...
    mission.Satellites.RAAN, ...
    mission.Satellites.ArgOfPeriapsis, ...
    mission.Satellites.TrueAnomaly, ...
    'VariableNames', ["a (m)", "e", "i (deg)", "Ω (deg)", "ω (deg)", "ν (deg)"])
ConstellationDefinition=24×6 table
     a (m)        e       i (deg)    Ω (deg)    ω (deg)    ν (deg)
    ________    ______    _______    _______    _______    _______

    2.96e+07    0.0005      56           0        350          0  
    2.96e+07    0.0005      56           0        350         45  
    2.96e+07    0.0005      56           0        350         90  
    2.96e+07    0.0005      56           0        350        135  
    2.96e+07    0.0005      56           0        350        180  
    2.96e+07    0.0005      56           0        350        225  
    2.96e+07    0.0005      56           0        350        270  
    2.96e+07    0.0005      56           0        350        315  
    2.96e+07    0.0005      56         120        350         15  
    2.96e+07    0.0005      56         120        350         60  
    2.96e+07    0.0005      56         120        350        105  
    2.96e+07    0.0005      56         120        350        150  
    2.96e+07    0.0005      56         120        350        195  
    2.96e+07    0.0005      56         120        350        240  
    2.96e+07    0.0005      56         120        350        285  
    2.96e+07    0.0005      56         120        350        330  
      ⋮

Open and Configure the Orbit Propagation Model

Open the included Simulink model. This model contains an Orbit Propagator block connected to output ports. The Orbit Propagator block supports vectorization. This allows you to model multiple satellites in a single block by specifying arrays of initial conditions in the Block Parameters window or using set_param. The model also includes a "Mission Analysis and Visualization" section that contains a dashboard Callback button. When clicked, this button runs the model, creates a new satelliteScenario object in the global base workspace containing the satellite or constellation defined in the Orbit Propagator block, and opens a Satellite Scenario Viewer window for the new scenario. To view the source code for this action, double click the callback button. The "Mission Analysis and Visualization" section is a standalone workflow to create a new satelliteScenario object and is not used as part of this written example.

mission.mdl = "OrbitPropagatorBlockExampleModel";
open_system(mission.mdl);

Define the path to the Orbit Propagator block in the model.

mission.Satellites.blk = mission.mdl + "/Orbit Propagator";

Set satellite initial conditions. To assign the Keplerian orbital element set defined in the previous section, use set_param.

set_param(mission.Satellites.blk, ...
    startDate = num2str(juliandate(mission.StartDate)), ...
    stateFormatNum = "Orbital elements", ...
    orbitType      = "Keplerian", ...
    semiMajorAxis  = "mission.Satellites.SemiMajorAxis", ...
    eccentricity   = "mission.Satellites.Eccentricity", ...
    inclination    = "mission.Satellites.Inclination", ...
    raan           = "mission.Satellites.RAAN", ...
    argPeriapsis   = "mission.Satellites.ArgOfPeriapsis", ...
    trueAnomaly    = "mission.Satellites.TrueAnomaly");

Set the position and velocity output ports of the block to use the Earth-centered Earth-fixed frame, which is the International Terrestrial Reference Frame (ITRF).

set_param(mission.Satellites.blk, ...
    centralBody  = "Earth", ...
    outportFrame = "Fixed-frame");

Configure the propagator. This example uses the Oblate ellipsoid (J2) propagator which includes second order zonal harmonic perturbations in the satellite trajectory calculations, accounting for the oblateness of Earth.

set_param(mission.Satellites.blk, ...
    propagator   = "Numerical (high precision)", ...
    gravityModel = "Oblate ellipsoid (J2)", ...
    useEOPs      = "off");

Apply model-level solver setting using set_param. For best performance and accuracy when using a numerical propagator, use a variable-step solver.

set_param(mission.mdl, ...
    SolverType = "Variable-step", ...
    SolverName = "VariableStepAuto", ...
    RelTol     = "1e-6", ...
    AbsTol     = "1e-7", ...
    StopTime   = string(seconds(mission.Duration)));

Save model output port data as a dataset of time series objects.

set_param(mission.mdl, ...
    SaveOutput = "on", ...
    OutputSaveName = "yout", ...
    SaveFormat = "Dataset");

Run the Model and Collect Satellite Ephemerides

Simulate the model.

mission.SimOutput = sim(mission.mdl);

Extract position and velocity data from the model output data structure.

mission.Satellites.TimeseriesPosECEF = mission.SimOutput.yout{1}.Values;
mission.Satellites.TimeseriesVelECEF = mission.SimOutput.yout{2}.Values;

Set the start data from the mission in the timeseries object.

mission.Satellites.TimeseriesPosECEF.TimeInfo.StartDate = mission.StartDate;
mission.Satellites.TimeseriesVelECEF.TimeInfo.StartDate = mission.StartDate;

The timeseries objects contain position and velocity data for all 24 satellites.

mission.Satellites.TimeseriesPosECEF
  timeseries

  Common Properties:
            Name: ''
            Time: [57x1 double]
        TimeInfo: [1x1 tsdata.timemetadata]
            Data: [24x3x57 double]
        DataInfo: [1x1 tsdata.datametadata]

  More properties, Methods

Load the Satellite Ephemerides into a satelliteScenario Object

Create a satellite scenario object for the analysis.

scenario = satelliteScenario(mission.StartDate, mission.StartDate + hours(24), 60);

Add all 24 satellites to the satellite scenario from the ECEF position and velocity timeseries objects using the satellite method.

sat = satellite(scenario, mission.Satellites.TimeseriesPosECEF, mission.Satellites.TimeseriesVelECEF, ...
    CoordinateFrame="ecef", Name="GALILEO " + (1:24))
sat = 
  1x24 Satellite array with properties:

    Name
    ID
    ConicalSensors
    Gimbals
    Transmitters
    Receivers
    Accesses
    Eclipse
    GroundTrack
    Orbit
    CoordinateAxes
    OrbitPropagator
    MarkerColor
    MarkerSize
    ShowLabel
    LabelFontColor
    LabelFontSize
    Visual3DModel
    Visual3DModelScale

disp(scenario)
  satelliteScenario with properties:

         StartTime: 30-Nov-2020 22:23:24
          StopTime: 01-Dec-2020 22:23:24
        SampleTime: 60
      AutoSimulate: 1
        Satellites: [1×24 matlabshared.satellitescenario.Satellite]
    GroundStations: [1×0 matlabshared.satellitescenario.GroundStation]
           Viewers: [0×0 matlabshared.satellitescenario.Viewer]
          AutoShow: 1

Set Graphical Properties on the Satellites

Set satellites in each orbital plane to have the same orbit color.

set(sat(1:8), MarkerColor="#FF6929");
set(sat(9:16), MarkerColor="#139FFF");
set(sat(17:24), MarkerColor="#64D413");
orbit = [sat(:).Orbit];
set(orbit(1:8), LineColor="#FF6929");
set(orbit(9:16), LineColor="#139FFF");
set(orbit(17:24), LineColor="#64D413");

Add Ground Stations to Scenario

To provide accurate positioning data, a location on Earth must have access to at least 4 satellites in the constellation at any given time. In this example, use three MathWorks® locations to compare total constellation access over the 1 day analysis window to different regions of Earth:

  • Natick, Massachusetts, USA (42.30048°, -71.34908°)

  • München, Germany (48.23206°, 11.68445°)

  • Bangalore, India (12.94448°, 77.69256°)

gsUS = groundStation(scenario, 42.30048, -71.34908, ...
    MinElevationAngle=10, Name="Natick");
gsUS.MarkerColor = "red";
gsDE = groundStation(scenario, 48.23206, 11.68445, ...
    MinElevationAngle=10, Name="Munchen");
gsDE.MarkerColor = "red";
gsIN = groundStation(scenario, 12.94448, 77.69256, ...
    MinElevationAngle=10, Name="Bangalore");
gsIN.MarkerColor = "red";


figure
geoscatter([gsUS.Latitude gsDE.Latitude gsIN.Latitude], ...
    [gsUS.Longitude gsDE.Longitude gsIN.Longitude], "red", "filled")
geolimits([-75 75], [-180 180])
title("Ground Stations")

Figure contains an axes object with type geoaxes. The geoaxes object contains an object of type scatter.

Compute Ground Station to Satellite Access (Line-of-Sight Visibility)

Calculate line-of-sight access between the ground stations and each individual satellite using the access method.

accessUS = access(gsUS, sat);
accessDE = access(gsDE, sat);
accessIN = access(gsIN, sat);

Set access colors to match orbital plane colors assigned earlier in the example.

set(accessUS, LineWidth="1");
set(accessUS(1:8), LineColor="#FF6929");
set(accessUS(9:16), LineColor="#139FFF");
set(accessUS(17:24), LineColor="#64D413");

set(accessDE, LineWidth="1");
set(accessDE(1:8), LineColor="#FF6929");
set(accessDE(9:16), LineColor="#139FFF");
set(accessDE(17:24), LineColor="#64D413");

set(accessIN, LineWidth="1");
set(accessIN(1:8), LineColor="#FF6929");
set(accessIN(9:16), LineColor="#139FFF");
set(accessIN(17:24), LineColor="#64D413");

View the full access table between each ground station and all satellites in the constellation as tables. Sort the access intervals by interval start time. Satellites added from ephemeris data do not display values for StartOrbit and Stop orbit.

intervalsUS = accessIntervals(accessUS);
intervalsUS = sortrows(intervalsUS, "StartTime", "ascend")
intervalsUS=40×8 table
     Source        Target       IntervalNumber         StartTime                EndTime           Duration    StartOrbit    EndOrbit
    ________    ____________    ______________    ____________________    ____________________    ________    __________    ________

    "Natick"    "GALILEO 1"           1           30-Nov-2020 22:23:24    01-Dec-2020 04:04:24     20460         NaN          NaN   
    "Natick"    "GALILEO 2"           1           30-Nov-2020 22:23:24    01-Dec-2020 01:24:24     10860         NaN          NaN   
    "Natick"    "GALILEO 3"           1           30-Nov-2020 22:23:24    30-Nov-2020 22:57:24      2040         NaN          NaN   
    "Natick"    "GALILEO 12"          1           30-Nov-2020 22:23:24    01-Dec-2020 00:00:24      5820         NaN          NaN   
    "Natick"    "GALILEO 13"          1           30-Nov-2020 22:23:24    30-Nov-2020 23:05:24      2520         NaN          NaN   
    "Natick"    "GALILEO 18"          1           30-Nov-2020 22:23:24    01-Dec-2020 04:00:24     20220         NaN          NaN   
    "Natick"    "GALILEO 19"          1           30-Nov-2020 22:23:24    01-Dec-2020 01:42:24     11940         NaN          NaN   
    "Natick"    "GALILEO 20"          1           30-Nov-2020 22:23:24    30-Nov-2020 22:46:24      1380         NaN          NaN   
    "Natick"    "GALILEO 11"          1           30-Nov-2020 22:25:24    01-Dec-2020 00:18:24      6780         NaN          NaN   
    "Natick"    "GALILEO 17"          1           30-Nov-2020 22:50:24    01-Dec-2020 05:50:24     25200         NaN          NaN   
    "Natick"    "GALILEO 8"           1           30-Nov-2020 23:20:24    01-Dec-2020 07:09:24     28140         NaN          NaN   
    "Natick"    "GALILEO 7"           1           01-Dec-2020 01:26:24    01-Dec-2020 10:00:24     30840         NaN          NaN   
    "Natick"    "GALILEO 24"          1           01-Dec-2020 01:40:24    01-Dec-2020 07:12:24     19920         NaN          NaN   
    "Natick"    "GALILEO 14"          1           01-Dec-2020 03:56:24    01-Dec-2020 07:15:24     11940         NaN          NaN   
    "Natick"    "GALILEO 6"           1           01-Dec-2020 04:05:24    01-Dec-2020 12:14:24     29340         NaN          NaN   
    "Natick"    "GALILEO 23"          1           01-Dec-2020 04:10:24    01-Dec-2020 08:03:24     13980         NaN          NaN   
      ⋮

intervalsDE = accessIntervals(accessDE);
intervalsDE = sortrows(intervalsDE, "StartTime", "ascend")
intervalsDE=40×8 table
     Source         Target       IntervalNumber         StartTime                EndTime           Duration    StartOrbit    EndOrbit
    _________    ____________    ______________    ____________________    ____________________    ________    __________    ________

    "Munchen"    "GALILEO 2"           1           30-Nov-2020 22:23:24    01-Dec-2020 04:34:24     22260         NaN          NaN   
    "Munchen"    "GALILEO 3"           1           30-Nov-2020 22:23:24    01-Dec-2020 01:58:24     12900         NaN          NaN   
    "Munchen"    "GALILEO 4"           1           30-Nov-2020 22:23:24    30-Nov-2020 23:05:24      2520         NaN          NaN   
    "Munchen"    "GALILEO 10"          1           30-Nov-2020 22:23:24    30-Nov-2020 23:58:24      5700         NaN          NaN   
    "Munchen"    "GALILEO 19"          1           30-Nov-2020 22:23:24    01-Dec-2020 01:36:24     11580         NaN          NaN   
    "Munchen"    "GALILEO 20"          1           30-Nov-2020 22:23:24    01-Dec-2020 00:15:24      6720         NaN          NaN   
    "Munchen"    "GALILEO 21"          1           30-Nov-2020 22:23:24    30-Nov-2020 22:28:24       300         NaN          NaN   
    "Munchen"    "GALILEO 9"           1           30-Nov-2020 22:34:24    01-Dec-2020 02:22:24     13680         NaN          NaN   
    "Munchen"    "GALILEO 18"          1           30-Nov-2020 22:41:24    01-Dec-2020 02:31:24     13800         NaN          NaN   
    "Munchen"    "GALILEO 1"           1           30-Nov-2020 23:05:24    01-Dec-2020 06:42:24     27420         NaN          NaN   
    "Munchen"    "GALILEO 16"          1           30-Nov-2020 23:29:24    01-Dec-2020 04:47:24     19080         NaN          NaN   
    "Munchen"    "GALILEO 15"          1           01-Dec-2020 00:50:24    01-Dec-2020 07:27:24     23820         NaN          NaN   
    "Munchen"    "GALILEO 17"          1           01-Dec-2020 01:05:24    01-Dec-2020 03:00:24      6900         NaN          NaN   
    "Munchen"    "GALILEO 8"           1           01-Dec-2020 01:57:24    01-Dec-2020 08:25:24     23280         NaN          NaN   
    "Munchen"    "GALILEO 14"          1           01-Dec-2020 02:36:24    01-Dec-2020 10:19:24     27780         NaN          NaN   
    "Munchen"    "GALILEO 7"           1           01-Dec-2020 04:35:24    01-Dec-2020 09:43:24     18480         NaN          NaN   
      ⋮

intervalsIN = accessIntervals(accessIN);
intervalsIN = sortrows(intervalsIN, "StartTime", "ascend")
intervalsIN=31×8 table
      Source          Target       IntervalNumber         StartTime                EndTime           Duration    StartOrbit    EndOrbit
    ___________    ____________    ______________    ____________________    ____________________    ________    __________    ________

    "Bangalore"    "GALILEO 3"           1           30-Nov-2020 22:23:24    01-Dec-2020 05:12:24     24540         NaN          NaN   
    "Bangalore"    "GALILEO 4"           1           30-Nov-2020 22:23:24    01-Dec-2020 02:59:24     16560         NaN          NaN   
    "Bangalore"    "GALILEO 5"           1           30-Nov-2020 22:23:24    01-Dec-2020 00:22:24      7140         NaN          NaN   
    "Bangalore"    "GALILEO 9"           1           30-Nov-2020 22:23:24    01-Dec-2020 03:37:24     18840         NaN          NaN   
    "Bangalore"    "GALILEO 10"          1           30-Nov-2020 22:23:24    01-Dec-2020 00:09:24      6360         NaN          NaN   
    "Bangalore"    "GALILEO 16"          1           30-Nov-2020 22:23:24    01-Dec-2020 08:44:24     37260         NaN          NaN   
    "Bangalore"    "GALILEO 21"          1           30-Nov-2020 22:23:24    30-Nov-2020 23:25:24      3720         NaN          NaN   
    "Bangalore"    "GALILEO 22"          1           30-Nov-2020 22:23:24    30-Nov-2020 22:58:24      2100         NaN          NaN   
    "Bangalore"    "GALILEO 15"          1           01-Dec-2020 00:17:24    01-Dec-2020 11:16:24     39540         NaN          NaN   
    "Bangalore"    "GALILEO 2"           1           01-Dec-2020 00:25:24    01-Dec-2020 07:10:24     24300         NaN          NaN   
    "Bangalore"    "GALILEO 22"          2           01-Dec-2020 00:48:24    01-Dec-2020 05:50:24     18120         NaN          NaN   
    "Bangalore"    "GALILEO 21"          2           01-Dec-2020 01:32:24    01-Dec-2020 08:29:24     25020         NaN          NaN   
    "Bangalore"    "GALILEO 1"           1           01-Dec-2020 03:06:24    01-Dec-2020 07:17:24     15060         NaN          NaN   
    "Bangalore"    "GALILEO 20"          1           01-Dec-2020 03:36:24    01-Dec-2020 12:38:24     32520         NaN          NaN   
    "Bangalore"    "GALILEO 14"          1           01-Dec-2020 05:48:24    01-Dec-2020 13:29:24     27660         NaN          NaN   
    "Bangalore"    "GALILEO 19"          1           01-Dec-2020 05:53:24    01-Dec-2020 17:06:24     40380         NaN          NaN   
      ⋮

View the Satellite Scenario

Open a 3-D viewer window of the scenario. The viewer window contains all 24 satellites and the three ground stations defined earlier in this example. A line is drawn between each ground station and satellite during their corresponding access intervals. Hide the details of the satellites and ground stations by setting the ShowDetails name-value pair to false. Show satellite orbits and labels for the ground station locations.

viewer3D = satelliteScenarioViewer(scenario, ShowDetails=false);
show(sat.Orbit);
gsUS.ShowLabel = true;
gsUS.LabelFontSize = 11;
gsDE.ShowLabel = true;
gsDE.LabelFontSize = 11;
gsIN.ShowLabel = true;
gsIN.LabelFontSize = 11;

Compare Access Between Ground Stations

Calculate access status between each satellite and ground station using the accessStatus method. Each row of the output array corresponds with a satellite in the constellation. Each column corresponds with time steps in the scenario. A value of True indicates that the satellite can access the aircraft at that specific time sample. The second output of accessStatus contains the time steps of the scenario. Plot cumulative access for each ground station over the one day analysis window.

[statusUS, timeSteps] = accessStatus(accessUS);
statusDE = accessStatus(accessDE);
statusIN = accessStatus(accessIN);

% Sum cumulative access at each timestep
statusUS = sum(statusUS, 1);
statusDE = sum(statusDE, 1);
statusIN = sum(statusIN, 1);

subplot(3,1,1);
stairs(timeSteps, statusUS);
title("Natick to GALILEO")
ylabel("# of satellites")
subplot(3,1,2);
stairs(timeSteps, statusDE);
title("München to GALILEO")
ylabel("# of satellites")
subplot(3,1,3);
stairs(timeSteps, statusIN);
title("Bangalore to GALILEO")
ylabel("# of satellites")

Figure contains 3 axes objects. Axes object 1 with title Natick to GALILEO, ylabel # of satellites contains an object of type stair. Axes object 2 with title München to GALILEO, ylabel # of satellites contains an object of type stair. Axes object 3 with title Bangalore to GALILEO, ylabel # of satellites contains an object of type stair.

Collect access interval metrics for each ground station in a table for comparison.

statusTable = [table(height(intervalsUS), height(intervalsDE), height(intervalsIN)); ...
    table(sum(intervalsUS.Duration)/3600, sum(intervalsDE.Duration)/3600, sum(intervalsIN.Duration)/3600); ...
    table(mean(intervalsUS.Duration/60), mean(intervalsDE.Duration/60), mean(intervalsIN.Duration/60)); ...
    table(mean(statusUS, 2), mean(statusDE, 2), mean(statusIN, 2)); ...
    table(min(statusUS), min(statusDE), min(statusIN)); ...
    table(max(statusUS), max(statusDE), max(statusIN))];
statusTable.Properties.VariableNames = ["Natick", "München", "Bangalore"];
statusTable.Properties.RowNames = ["Total # of intervals", "Total interval time (hrs)",...
    "Mean interval length (min)", "Mean # of satellites in view", ...
    "Min # of satellites in view", "Max # of satellites in view"];
statusTable
statusTable=6×3 table
                                    Natick    München    Bangalore
                                    ______    _______    _________

    Total # of intervals                40        40          31  
    Total interval time (hrs)       167.88    169.95      180.42  
    Mean interval length (min)      251.82    254.93      349.19  
    Mean # of satellites in view     7.018    7.1041      7.5337  
    Min # of satellites in view          5         5           5  
    Max # of satellites in view          9        10           9  

Walker-Delta constellations are evenly distributed across longitudes. Natick and München are located at similar latitudes, and therefore have very similar access characteristics with respect to the constellation. Bangalore is at a latitude closer to the equator, and despite having a lower number of individual access intervals, it has the highest average number of satellites in view, the highest overall interval time, and the longest average interval duration (by about 95 minutes). All locations always have at least 4 satellites in view, as is required for GNSS trilateration.

References

[1] Wertz, James R, David F. Everett, and Jeffery J. Puschell. Space Mission Engineering: The New Smad. Hawthorne, CA: Microcosm Press, 2011. Print.

[2] Beech, Theresa W., Sefania Cornana, Miguel B. Mora. A Study of Three Satellite Constellation Design Algorithms. 14th International Symposium on Space Flight Dynamics, Foz do Iguaçu, Brazil 1999.

[3] The European Space Agency: Galileo Facts and Figures. https://www.esa.int/Applications/Navigation/Galileo/Facts_and_figures

See Also

Blocks

Objects

Go to top of page