dipoleBlade

Create blade dipole antenna

Description

The dipoleBlade object is a wideband blade dipole antenna oriented along the X-Y plane.

The width of the dipole is related to the circular cross-section by the equation,

w=2d=4r

, where:

  • d is the diameter of equivalent cylindrical pole

  • r is the radius of equivalent cylindrical pole

For a given cylinder radius, use the cylinder2strip utility function to calculate the equivalent width.

Creation

Description

example

db = dipoleBlade creates a wideband blade dipole antenna on the X-Y plane.

db = dipoleBlade(Name,Value) creates a wideband blade dipole antenna, with additional properties specified by one or more name-value pair arguments. Name is the property name and Value is the corresponding value. You can specify several name-value pair arguments in any order as Name1, Value1, ..., NameN, ValueN. Properties not specified retain their default values.

Properties

expand all

Blade dipole length, specified as a scalar in meters.

Example: 'Length',0.5

Data Types: double

Blade dipole width, specified as a scalar in meters.

Example: 'Width',0.2

Data Types: double

Taper length, specified as a scalar in meters.

Example: 'TaperLength',0.500

Data Types: double

Blade dipole feed width, specified as a scalar in meters.

Example: 'FeedWidth',0.006

Data Types: double

Blade dipole feed length or distance between the two wings of the dipole, specified as a scalar in meters.

Example: 'FeedGap',0.006

Data Types: double

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more information, see lumpedElement.

Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using lumpedElement.

Example: db.Load = lumpedElement('Impedance',75)

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more information, see Rotate Antennas and Arrays.

Example: 'Tilt',90

Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degree about two axes, defined by vectors.

Data Types: double

Tilt axis of the antenna, specified as:

  • Three-element vectors of Cartesian coordinates in meters. In this case, each vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

  • Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case, the antenna rotates around the line joining the two points in space.

  • A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see Rotate Antennas and Arrays.

Example: 'TiltAxis',[0 1 0]

Example: 'TiltAxis',[0 0 0;0 1 0]

Example: ant.TiltAxis = 'Z'

Object Functions

showDisplay antenna or array structure; Display shape as filled patch
infoDisplay information about antenna or array
axialRatioAxial ratio of antenna
beamwidthBeamwidth of antenna
chargeCharge distribution on metal or dielectric antenna or array surface
currentCurrent distribution on metal or dielectric antenna or array surface
designDesign prototype antenna or arrays for resonance at specified frequency
EHfieldsElectric and magnetic fields of antennas; Embedded electric and magnetic fields of antenna element in arrays
impedanceInput impedance of antenna; scan impedance of array
meshMesh properties of metal or dielectric antenna or array structure
meshconfigChange mesh mode of antenna structure
patternRadiation pattern and phase of antenna or array; Embedded pattern of antenna element in array
patternAzimuthAzimuth pattern of antenna or array
patternElevationElevation pattern of antenna or array
returnLossReturn loss of antenna; scan return loss of array
sparametersS-parameter object
vswrVoltage standing wave ratio of antenna

Examples

collapse all

Create and view a default blade dipole.

db = dipoleBlade
db = 
  dipoleBlade with properties:

         Length: 0.1170
    TaperLength: 0.1120
          Width: 0.1400
      FeedWidth: 0.0030
        FeedGap: 0.0030
           Tilt: 0
       TiltAxis: [1 0 0]
           Load: [1x1 lumpedElement]

show(db);

Plot the radiation pattern of the blade dipole at 600 MHz.

pattern(db,600e6)

References

[1] Balanis, C.A. Antenna Theory: Analysis and Design. 3rd Ed. New York: Wiley, 2005.

[2] Volakis, John. Antenna Engineering Handbook. 4th Ed. New York: McGraw-Hill, 2007.

Introduced in R2017a