deploy
Class: dlhdl.Workflow
Namespace: dlhdl
Syntax
Description
deploy(
programs the specified
target board with the bitstream and deploys the deep learning network on it.workflowObject
)
Input Arguments
workflowObject
— Deep learning network deployment options
dlhdl.Workflow
object
Deep learning network deployment options, specified as a
dlhdl.Workflow
object.
Examples
Get Started with Deep Learning FPGA Deployment on Intel Arria 10 SoC
This example shows how to create, compile, and deploy a dlhdl.Workflow
object that has a handwritten character detection series network object by using the Deep Learning HDL Toolbox™ Support Package for Intel FPGA and SoC. Use MATLAB® to retrieve the prediction results from the target device.
Prerequisites
Intel Arria™ 10 SoC development kit
Deep Learning HDL Toolbox™ Support Package for Intel FPGA and SoC
Deep Learning HDL Toolbox™
Deep Learning Toolbox™
Load the Pretrained SeriesNetwork
To load the pretrained network, that has been trained on the Modified National Institute Standards of Technology (MNIST) database[1], enter:
net = getDigitsNetwork;
To view the layers of the pretrained series network, enter:
analyzeNetwork(net)
Create Target Object
Create a target object that has a custom name for your target device and an interface to connect your target device to the host computer. Interface options are JTAG and Ethernet. To use JTAG, install Intel™ Quartus™ Prime Standard Edition 22.1. Set up the path to your installed Intel Quartus Prime executable if it is not already set up. For example, to set the toolpath, enter:
% hdlsetuptoolpath('ToolName', 'Altera Quartus II','ToolPath', 'C:\altera\22.1\quartus\bin64');
hTarget = dlhdl.Target('Intel')
hTarget = Target with properties: Vendor: 'Intel' Interface: JTAG
Create Workflow Object
Create an object of the dlhdl.Workflow
class. When you create the object, specify the network and the bitstream name. Specify the saved pretrained MNIST neural network, snet, as the network. Make sure that the bitstream name matches the data type and the FPGA board that you are targeting. In this example, the target FPGA board is the Intel Arria 10 SOC board and the bitstream uses a single data type.
hW = dlhdl.Workflow('network', net, 'Bitstream', 'arria10soc_single','Target',hTarget);
Compile the MNIST Series Network
To compile the MNIST series network, run the compile function of the dlhdl.Workflow
object.
dn = hW.compile;
### Compiling network for Deep Learning FPGA prototyping ... ### Targeting FPGA bitstream arria10soc_single. ### An output layer called 'Output1_softmax' of type 'nnet.cnn.layer.RegressionOutputLayer' has been added to the provided network. This layer performs no operation during prediction and thus does not affect the output of the network. ### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer' ### Notice: The layer 'imageinput' of type 'ImageInputLayer' is split into an image input layer 'imageinput' and an addition layer 'imageinput_norm' for normalization on hardware. ### The network includes the following layers: 1 'imageinput' Image Input 28×28×1 images with 'zerocenter' normalization (SW Layer) 2 'conv_1' 2-D Convolution 8 3×3×1 convolutions with stride [1 1] and padding 'same' (HW Layer) 3 'relu_1' ReLU ReLU (HW Layer) 4 'maxpool_1' 2-D Max Pooling 2×2 max pooling with stride [2 2] and padding [0 0 0 0] (HW Layer) 5 'conv_2' 2-D Convolution 16 3×3×8 convolutions with stride [1 1] and padding 'same' (HW Layer) 6 'relu_2' ReLU ReLU (HW Layer) 7 'maxpool_2' 2-D Max Pooling 2×2 max pooling with stride [2 2] and padding [0 0 0 0] (HW Layer) 8 'conv_3' 2-D Convolution 32 3×3×16 convolutions with stride [1 1] and padding 'same' (HW Layer) 9 'relu_3' ReLU ReLU (HW Layer) 10 'fc' Fully Connected 10 fully connected layer (HW Layer) 11 'softmax' Softmax softmax (SW Layer) 12 'Output1_softmax' Regression Output mean-squared-error (SW Layer) ### Notice: The layer 'softmax' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software. ### Notice: The layer 'Output1_softmax' with type 'nnet.cnn.layer.RegressionOutputLayer' is implemented in software. ### Compiling layer group: conv_1>>maxpool_2 ... ### Compiling layer group: conv_1>>maxpool_2 ... complete. ### Compiling layer group: conv_3>>relu_3 ... ### Compiling layer group: conv_3>>relu_3 ... complete. ### Compiling layer group: fc ... ### Compiling layer group: fc ... complete. ### Allocating external memory buffers: offset_name offset_address allocated_space _______________________ ______________ _________________ "InputDataOffset" "0x00000000" "368.0 kB" "OutputResultOffset" "0x0005c000" "4.0 kB" "SchedulerDataOffset" "0x0005d000" "220.0 kB" "SystemBufferOffset" "0x00094000" "76.0 kB" "InstructionDataOffset" "0x000a7000" "28.0 kB" "ConvWeightDataOffset" "0x000ae000" "28.0 kB" "FCWeightDataOffset" "0x000b5000" "100.0 kB" "EndOffset" "0x000ce000" "Total: 824.0 kB" ### Network compilation complete.
Program Bitstream onto FPGA and Download Network Weights
To deploy the network on the Intel Arria 10 SoC hardware, run the deploy function of the dlhdl.Workflow
object. This function uses the output of the compile function to program the FPGA board by using the programming file. It also downloads the network weights and biases. The deploy function starts programming the FPGA device, displays progress messages, and the time it takes to deploy the network.
hW.deploy
### Programming FPGA Bitstream using JTAG... ### Programming the FPGA bitstream has been completed successfully. ### Loading weights to Conv Processor. ### Conv Weights loaded. Current time is 18-Jul-2024 10:54:36 ### Loading weights to FC Processor. ### FC Weights loaded. Current time is 18-Jul-2024 10:54:37
Run Prediction for Example Image
To load the example image, execute the predict function of the dlhdl.Workflow
object, and then display the FPGA result, enter:
inputImg = imread('five_28x28.pgm'); inputImg = dlarray(single(inputImg), 'SSCB');
Run prediction with the profile 'on' to see the latency and throughput results.
[prediction, speed] = hW.predict(inputImg,'Profile','on');
### Finished writing input activations. ### Running single input activation. Deep Learning Processor Profiler Performance Results LastFrameLatency(cycles) LastFrameLatency(seconds) FramesNum Total Latency Frames/s ------------- ------------- --------- --------- --------- Network 31905 0.00021 1 32854 4565.7 imageinput_norm 2913 0.00002 conv_1 6819 0.00005 maxpool_1 4493 0.00003 conv_2 5200 0.00003 maxpool_2 3549 0.00002 conv_3 6045 0.00004 fc 2854 0.00002 * The clock frequency of the DL processor is: 150MHz
[val, idx] = max(prediction);
fprintf('The prediction result is %d\n', idx-1);
The prediction result is 5
Bibliography
LeCun, Y., C. Cortes, and C. J. C. Burges. "The MNIST Database of Handwritten Digits." https://yann.lecun.com/exdb/mnist/.
Classify Images on FPGA Using Quantized Neural Network
This example uses:
- Deep Learning HDL ToolboxDeep Learning HDL Toolbox
- Deep Learning HDL Toolbox Support Package for Xilinx FPGA and SoC DevicesDeep Learning HDL Toolbox Support Package for Xilinx FPGA and SoC Devices
- Deep Learning Toolbox Model Quantization LibraryDeep Learning Toolbox Model Quantization Library
- Deep Learning ToolboxDeep Learning Toolbox
- Computer Vision ToolboxComputer Vision Toolbox
- Deep Learning Toolbox Model for ResNet-18 NetworkDeep Learning Toolbox Model for ResNet-18 Network
This example shows how to use Deep Learning HDL Toolbox™ to deploy a quantized deep convolutional neural network (CNN) to an FPGA. In the example you use the pretrained ResNet-18 CNN to perform transfer learning and quantization. You then deploy the quantized network and use MATLAB ® to retrieve the prediction results.
ResNet-18 has been trained on over a million images and can classify images into 1000 object categories, such as keyboard, coffee mug, pencil, and many animals. The network has learned rich feature representations for a wide range of images. The network takes an image as input and outputs a label for the object in the image together with the probabilities for each of the object categories.
For this example, you need:
Deep Learning Toolbox™
Deep Learning HDL Toolbox™
Deep Learning Toolbox Model for ResNet-18 Network
Deep Learning HDL Toolbox™ Support Package for Xilinx® FPGA and SoC Devices
Image Processing Toolbox™
Deep Learning Toolbox Model Quantization Library
MATLAB® Coder™ Interface for Deep Learning
To perform classification on a new set of images, you fine-tune a pretrained ResNet-18 CNN by transfer learning. In transfer learning, you can take a pretrained network and use it as a starting point to learn a new task. Fine-tuning a network with transfer learning is usually much faster and easier than training a network with randomly initialized weights. You can quickly transfer learned features to a new task using a smaller number of training images.
Load Pretrained Network
Load the pretrained ResNet-18 network.
net = resnet18;
View the layers of the pretrained network.
deepNetworkDesigner(net);
The first layer, the image input layer, requires input images of size 227-by-227-by-3, where three is the number of color channels.
inputSize = net.Layers(1).InputSize;
Load Data
This example uses the MathWorks
MerchData data set. This is a small data set containing 75 images of MathWorks merchandise, belonging to five different classes (cap, cube, playing cards, screwdriver, and torch).
curDir = pwd; unzip('MerchData.zip'); imds = imageDatastore('MerchData', ... 'IncludeSubfolders',true, ... 'LabelSource','foldernames');
Specify Training and Validation Sets
Divide the data into training and validation data sets, so that 30% percent of the images go to the training data set and 70% of the images to the validation data set. splitEachLabel
splits the datastore imds
into two new datastores, imdsTrain
and imdsValidation
.
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');
Replace Final layers
To retrain ResNet-18 to classify new images, replace the last fully connected layer and final classification layer of the network. In ResNet-18 , these layers have the names 'fc1000'
and 'ClassificationLayer_predictions
', respectively. The fully connected layer and classification layer of the pretrained network net
are configured for 1000 classes. These two layers fc1000
and ClassificationLayer_predictions
in ResNet-18, contain information on how to combine the features that the network extracts into class probabilities and predicted labels. These two layers must be fine-tuned for the new classification problem. Extract all the layers, except the last two layers, from the pretrained network.
lgraph = layerGraph(net)
lgraph = LayerGraph with properties: InputNames: {'data'} OutputNames: {'ClassificationLayer_predictions'} Layers: [71×1 nnet.cnn.layer.Layer] Connections: [78×2 table]
numClasses = numel(categories(imdsTrain.Labels))
numClasses = 5
newLearnableLayer = fullyConnectedLayer(numClasses, ... 'Name','new_fc', ... 'WeightLearnRateFactor',10, ... 'BiasLearnRateFactor',10); lgraph = replaceLayer(lgraph,'fc1000',newLearnableLayer); newClassLayer = classificationLayer('Name','new_classoutput'); lgraph = replaceLayer(lgraph,'ClassificationLayer_predictions',newClassLayer);
Prepare Data for Training
The network requires input images of size 224-by-224-by-3, but the images in the image datastores have different sizes. Use an augmented image datastore to automatically resize the training images. Specify additional augmentation operations to perform on the training images, such as randomly flipping the training images along the vertical axis and randomly translating them up to 30 pixels horizontally and vertically. Data augmentation helps prevent the network from overfitting and memorizing the exact details of the training images.
pixelRange = [-30 30]; imageAugmenter = imageDataAugmenter( ... 'RandXReflection',true, ... 'RandXTranslation',pixelRange, ... 'RandYTranslation',pixelRange);
To automatically resize the validation images without performing further data augmentation, use an augmented image datastore without specifying any additional preprocessing operations.
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ... 'DataAugmentation',imageAugmenter); augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);
Specify Training Options
Specify the training options. For transfer learning, keep the features from the early layers of the pretrained network (the transferred layer weights). To slow down learning in the transferred layers, set the initial learning rate to a small value. Specify the mini-batch size and validation data. The software validates the network every ValidationFrequency
iterations during training.
options = trainingOptions('sgdm', ... 'MiniBatchSize',10, ... 'MaxEpochs',6, ... 'InitialLearnRate',1e-4, ... 'Shuffle','every-epoch', ... 'ValidationData',augimdsValidation, ... 'ValidationFrequency',3, ... 'Verbose',false, ... 'Plots','training-progress');
Train Network
Train the network that consists of the transferred and new layers. By default, trainNetwork
uses a GPU if one is available. Using this function on a GPU requires Parallel Computing Toolbox™ and a supported GPU device. For more information, see GPU Computing Requirements (Parallel Computing Toolbox). If a GPU is not available, the network uses a CPU (requires MATLAB Coder Interface for Deep learning). You can also specify the execution environment by using the ExecutionEnvironment
name-value argument of trainingOptions
.
netTransfer = trainNetwork(augimdsTrain,lgraph,options);
Quantize Network
Quantize the network using the dlquantizer
object. Set the target execution environment to FPGA.
dlquantObj = dlquantizer(netTransfer,'ExecutionEnvironment','FPGA');
Calibrate Quantized Network
Use the calibrate
function to exercise the network with sample inputs and collect the range information. The calibrate
function collects the dynamic ranges of the weights and biases in the convolution and fully connected layers of the network and the dynamic ranges of the activations in all layers of the network. The function returns the information as a table, in which each row contains range information for a learnable parameter of the quantized network.
calibrate(dlquantObj,augimdsTrain)
ans=95×5 table
Optimized Layer Name Network Layer Name Learnables / Activations MinValue MaxValue
__________________________ __________________ ________________________ ________ ________
{'conv1_Weights' } {'conv1' } "Weights" -0.79143 1.2547
{'conv1_Bias' } {'conv1' } "Bias" -0.66949 0.67671
{'res2a_branch2a_Weights'} {'res2a_branch2a'} "Weights" -0.42074 0.34251
{'res2a_branch2a_Bias' } {'res2a_branch2a'} "Bias" -0.8039 1.2488
{'res2a_branch2b_Weights'} {'res2a_branch2b'} "Weights" -0.78524 0.59222
{'res2a_branch2b_Bias' } {'res2a_branch2b'} "Bias" -1.3835 1.7661
{'res2b_branch2a_Weights'} {'res2b_branch2a'} "Weights" -0.3174 0.33645
{'res2b_branch2a_Bias' } {'res2b_branch2a'} "Bias" -1.1203 1.5238
{'res2b_branch2b_Weights'} {'res2b_branch2b'} "Weights" -1.1915 0.93059
{'res2b_branch2b_Bias' } {'res2b_branch2b'} "Bias" -0.81928 1.2022
{'res3a_branch2a_Weights'} {'res3a_branch2a'} "Weights" -0.19735 0.22659
{'res3a_branch2a_Bias' } {'res3a_branch2a'} "Bias" -0.53009 0.69532
{'res3a_branch2b_Weights'} {'res3a_branch2b'} "Weights" -0.53557 0.72768
{'res3a_branch2b_Bias' } {'res3a_branch2b'} "Bias" -0.67756 1.1733
{'res3a_branch1_Weights' } {'res3a_branch1' } "Weights" -0.63395 0.97791
{'res3a_branch1_Bias' } {'res3a_branch1' } "Bias" -0.95277 0.75618
⋮
Define FPGA Board Interface
Define the target FPGA board programming interface by using the dlhdl.Target
object. Create a programming interface with custom name for your target device and an Ethernet interface to connect the target device to the host computer.
hTarget = dlhdl.Target('Xilinx','Interface','Ethernet');
Prepare Network for Deployment
Prepare the network for deployment by creating a dlhdl.Workflow
object. Specify the network and bitstream name. Ensure that the bitstream name matches the data type and the FPGA board that you are targeting. In this example, the target FPGA board is the Xilinx® Zynq® UltraScale+™ MPSoC ZCU102 board and the bitstream uses the int8
data type.
hW = dlhdl.Workflow(Network=dlquantObj,Bitstream='zcu102_int8',Target=hTarget);
Compile Network
Run the compile
method of the dlhdl.Workflow
object to compile the network and generate the instructions, weights, and biases for deployment.
dn = compile(hW,'InputFrameNumberLimit',15)
### Compiling network for Deep Learning FPGA prototyping ... ### Targeting FPGA bitstream zcu102_int8. ### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer' ### The network includes the following layers: 1 'data' Image Input 224×224×3 images with 'zscore' normalization (SW Layer) 2 'conv1' 2-D Convolution 64 7×7×3 convolutions with stride [2 2] and padding [3 3 3 3] (HW Layer) 3 'conv1_relu' ReLU ReLU (HW Layer) 4 'pool1' 2-D Max Pooling 3×3 max pooling with stride [2 2] and padding [1 1 1 1] (HW Layer) 5 'res2a_branch2a' 2-D Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 6 'res2a_branch2a_relu' ReLU ReLU (HW Layer) 7 'res2a_branch2b' 2-D Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 8 'res2a' Addition Element-wise addition of 2 inputs (HW Layer) 9 'res2a_relu' ReLU ReLU (HW Layer) 10 'res2b_branch2a' 2-D Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 11 'res2b_branch2a_relu' ReLU ReLU (HW Layer) 12 'res2b_branch2b' 2-D Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 13 'res2b' Addition Element-wise addition of 2 inputs (HW Layer) 14 'res2b_relu' ReLU ReLU (HW Layer) 15 'res3a_branch2a' 2-D Convolution 128 3×3×64 convolutions with stride [2 2] and padding [1 1 1 1] (HW Layer) 16 'res3a_branch2a_relu' ReLU ReLU (HW Layer) 17 'res3a_branch2b' 2-D Convolution 128 3×3×128 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 18 'res3a_branch1' 2-D Convolution 128 1×1×64 convolutions with stride [2 2] and padding [0 0 0 0] (HW Layer) 19 'res3a' Addition Element-wise addition of 2 inputs (HW Layer) 20 'res3a_relu' ReLU ReLU (HW Layer) 21 'res3b_branch2a' 2-D Convolution 128 3×3×128 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 22 'res3b_branch2a_relu' ReLU ReLU (HW Layer) 23 'res3b_branch2b' 2-D Convolution 128 3×3×128 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 24 'res3b' Addition Element-wise addition of 2 inputs (HW Layer) 25 'res3b_relu' ReLU ReLU (HW Layer) 26 'res4a_branch2a' 2-D Convolution 256 3×3×128 convolutions with stride [2 2] and padding [1 1 1 1] (HW Layer) 27 'res4a_branch2a_relu' ReLU ReLU (HW Layer) 28 'res4a_branch2b' 2-D Convolution 256 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 29 'res4a_branch1' 2-D Convolution 256 1×1×128 convolutions with stride [2 2] and padding [0 0 0 0] (HW Layer) 30 'res4a' Addition Element-wise addition of 2 inputs (HW Layer) 31 'res4a_relu' ReLU ReLU (HW Layer) 32 'res4b_branch2a' 2-D Convolution 256 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 33 'res4b_branch2a_relu' ReLU ReLU (HW Layer) 34 'res4b_branch2b' 2-D Convolution 256 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 35 'res4b' Addition Element-wise addition of 2 inputs (HW Layer) 36 'res4b_relu' ReLU ReLU (HW Layer) 37 'res5a_branch2a' 2-D Convolution 512 3×3×256 convolutions with stride [2 2] and padding [1 1 1 1] (HW Layer) 38 'res5a_branch2a_relu' ReLU ReLU (HW Layer) 39 'res5a_branch2b' 2-D Convolution 512 3×3×512 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 40 'res5a_branch1' 2-D Convolution 512 1×1×256 convolutions with stride [2 2] and padding [0 0 0 0] (HW Layer) 41 'res5a' Addition Element-wise addition of 2 inputs (HW Layer) 42 'res5a_relu' ReLU ReLU (HW Layer) 43 'res5b_branch2a' 2-D Convolution 512 3×3×512 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 44 'res5b_branch2a_relu' ReLU ReLU (HW Layer) 45 'res5b_branch2b' 2-D Convolution 512 3×3×512 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 46 'res5b' Addition Element-wise addition of 2 inputs (HW Layer) 47 'res5b_relu' ReLU ReLU (HW Layer) 48 'pool5' 2-D Global Average Pooling 2-D global average pooling (HW Layer) 49 'new_fc' Fully Connected 5 fully connected layer (HW Layer) 50 'prob' Softmax softmax (SW Layer) 51 'new_classoutput' Classification Output crossentropyex with 'MathWorks Cap' and 4 other classes (SW Layer) ### Notice: The layer 'data' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software. ### Notice: The layer 'prob' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software. ### Notice: The layer 'new_classoutput' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software. ### Compiling layer group: conv1>>pool1 ... ### Compiling layer group: conv1>>pool1 ... complete. ### Compiling layer group: res2a_branch2a>>res2a_branch2b ... ### Compiling layer group: res2a_branch2a>>res2a_branch2b ... complete. ### Compiling layer group: res2b_branch2a>>res2b_branch2b ... ### Compiling layer group: res2b_branch2a>>res2b_branch2b ... complete. ### Compiling layer group: res3a_branch1 ... ### Compiling layer group: res3a_branch1 ... complete. ### Compiling layer group: res3a_branch2a>>res3a_branch2b ... ### Compiling layer group: res3a_branch2a>>res3a_branch2b ... complete. ### Compiling layer group: res3b_branch2a>>res3b_branch2b ... ### Compiling layer group: res3b_branch2a>>res3b_branch2b ... complete. ### Compiling layer group: res4a_branch1 ... ### Compiling layer group: res4a_branch1 ... complete. ### Compiling layer group: res4a_branch2a>>res4a_branch2b ... ### Compiling layer group: res4a_branch2a>>res4a_branch2b ... complete. ### Compiling layer group: res4b_branch2a>>res4b_branch2b ... ### Compiling layer group: res4b_branch2a>>res4b_branch2b ... complete. ### Compiling layer group: res5a_branch1 ... ### Compiling layer group: res5a_branch1 ... complete. ### Compiling layer group: res5a_branch2a>>res5a_branch2b ... ### Compiling layer group: res5a_branch2a>>res5a_branch2b ... complete. ### Compiling layer group: res5b_branch2a>>res5b_branch2b ... ### Compiling layer group: res5b_branch2a>>res5b_branch2b ... complete. ### Compiling layer group: pool5 ... ### Compiling layer group: pool5 ... complete. ### Compiling layer group: new_fc ... ### Compiling layer group: new_fc ... complete. ### Allocating external memory buffers: offset_name offset_address allocated_space _______________________ ______________ ________________ "InputDataOffset" "0x00000000" "8.0 MB" "OutputResultOffset" "0x00800000" "4.0 MB" "SchedulerDataOffset" "0x00c00000" "4.0 MB" "SystemBufferOffset" "0x01000000" "28.0 MB" "InstructionDataOffset" "0x02c00000" "4.0 MB" "ConvWeightDataOffset" "0x03000000" "16.0 MB" "FCWeightDataOffset" "0x04000000" "4.0 MB" "EndOffset" "0x04400000" "Total: 68.0 MB" ### Network compilation complete.
dn = struct with fields:
weights: [1×1 struct]
instructions: [1×1 struct]
registers: [1×1 struct]
syncInstructions: [1×1 struct]
constantData: {}
ddrInfo: [1×1 struct]
Program Bitstream onto FPGA and Download Network Weights
To deploy the network on the Xilinx ZCU102 hardware, run the deploy function of the dlhdl.Workflow
object. This function uses the output of the compile function to program the FPGA board by using the programming file. It also downloads the network weights and biases. The deploy function starts programming the FPGA device, displays progress messages, and the time it takes to deploy the network.
deploy(hW)
### Programming FPGA Bitstream using Ethernet... ### Attempting to connect to the hardware board at 192.168.1.101... ### Connection successful ### Programming FPGA device on Xilinx SoC hardware board at 192.168.1.101... ### Copying FPGA programming files to SD card... ### Setting FPGA bitstream and devicetree for boot... # Copying Bitstream zcu102_int8.bit to /mnt/hdlcoder_rd # Set Bitstream to hdlcoder_rd/zcu102_int8.bit # Copying Devicetree devicetree_dlhdl.dtb to /mnt/hdlcoder_rd # Set Devicetree to hdlcoder_rd/devicetree_dlhdl.dtb # Set up boot for Reference Design: 'AXI-Stream DDR Memory Access : 3-AXIM' ### Rebooting Xilinx SoC at 192.168.1.101... ### Reboot may take several seconds... ### Attempting to connect to the hardware board at 192.168.1.101... ### Connection successful ### Programming the FPGA bitstream has been completed successfully. ### Loading weights to Conv Processor. ### Conv Weights loaded. Current time is 21-Dec-2022 10:45:19 ### Loading weights to FC Processor. ### FC Weights loaded. Current time is 21-Dec-2022 10:45:19
Test Network
Load the example image.
imgFile = fullfile(pwd,'MathWorks_cube_0.jpg');
inputImg = imresize(imread(imgFile),[224 224]);
imshow(inputImg)
Classify the image on the FPGA by using the predict
method of the dlhdl.Workflow
object and display the results.
[prediction,speed] = predict(hW,single(inputImg),'Profile','on');
### Finished writing input activations. ### Running single input activation. Deep Learning Processor Profiler Performance Results LastFrameLatency(cycles) LastFrameLatency(seconds) FramesNum Total Latency Frames/s ------------- ------------- --------- --------- --------- Network 7392114 0.02957 1 7394677 33.8 conv1 1115165 0.00446 pool1 199164 0.00080 res2a_branch2a 270125 0.00108 res2a_branch2b 269946 0.00108 res2a 102255 0.00041 res2b_branch2a 269792 0.00108 res2b_branch2b 269902 0.00108 res2b 102695 0.00041 res3a_branch1 155120 0.00062 res3a_branch2a 156480 0.00063 res3a_branch2b 244913 0.00098 res3a 51456 0.00021 res3b_branch2a 245366 0.00098 res3b_branch2b 245123 0.00098 res3b 51286 0.00021 res4a_branch1 135535 0.00054 res4a_branch2a 136117 0.00054 res4a_branch2b 238454 0.00095 res4a 25602 0.00010 res4b_branch2a 237909 0.00095 res4b_branch2b 238282 0.00095 res4b 26742 0.00011 res5a_branch1 324642 0.00130 res5a_branch2a 325897 0.00130 res5a_branch2b 623521 0.00249 res5a 13881 0.00006 res5b_branch2a 624028 0.00250 res5b_branch2b 624631 0.00250 res5b 13051 0.00005 pool5 37083 0.00015 new_fc 17764 0.00007 * The clock frequency of the DL processor is: 250MHz
[val,idx] = max(prediction); dlquantObj.NetworkObject.Layers(end).ClassNames{idx}
ans = 'MathWorks Cube'
Performance Comparison
Compare the performance of the quantized network to the performance of the single data type network.
optionsFPGA = dlquantizationOptions('Bitstream','zcu102_int8','Target',hTarget); predictionFPGA = validate(dlquantObj,imdsValidation,optionsFPGA)
### Compiling network for Deep Learning FPGA prototyping ... ### Targeting FPGA bitstream zcu102_int8. ### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer' ### The network includes the following layers: 1 'data' Image Input 224×224×3 images with 'zscore' normalization (SW Layer) 2 'conv1' 2-D Convolution 64 7×7×3 convolutions with stride [2 2] and padding [3 3 3 3] (HW Layer) 3 'conv1_relu' ReLU ReLU (HW Layer) 4 'pool1' 2-D Max Pooling 3×3 max pooling with stride [2 2] and padding [1 1 1 1] (HW Layer) 5 'res2a_branch2a' 2-D Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 6 'res2a_branch2a_relu' ReLU ReLU (HW Layer) 7 'res2a_branch2b' 2-D Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 8 'res2a' Addition Element-wise addition of 2 inputs (HW Layer) 9 'res2a_relu' ReLU ReLU (HW Layer) 10 'res2b_branch2a' 2-D Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 11 'res2b_branch2a_relu' ReLU ReLU (HW Layer) 12 'res2b_branch2b' 2-D Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 13 'res2b' Addition Element-wise addition of 2 inputs (HW Layer) 14 'res2b_relu' ReLU ReLU (HW Layer) 15 'res3a_branch2a' 2-D Convolution 128 3×3×64 convolutions with stride [2 2] and padding [1 1 1 1] (HW Layer) 16 'res3a_branch2a_relu' ReLU ReLU (HW Layer) 17 'res3a_branch2b' 2-D Convolution 128 3×3×128 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 18 'res3a_branch1' 2-D Convolution 128 1×1×64 convolutions with stride [2 2] and padding [0 0 0 0] (HW Layer) 19 'res3a' Addition Element-wise addition of 2 inputs (HW Layer) 20 'res3a_relu' ReLU ReLU (HW Layer) 21 'res3b_branch2a' 2-D Convolution 128 3×3×128 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 22 'res3b_branch2a_relu' ReLU ReLU (HW Layer) 23 'res3b_branch2b' 2-D Convolution 128 3×3×128 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 24 'res3b' Addition Element-wise addition of 2 inputs (HW Layer) 25 'res3b_relu' ReLU ReLU (HW Layer) 26 'res4a_branch2a' 2-D Convolution 256 3×3×128 convolutions with stride [2 2] and padding [1 1 1 1] (HW Layer) 27 'res4a_branch2a_relu' ReLU ReLU (HW Layer) 28 'res4a_branch2b' 2-D Convolution 256 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 29 'res4a_branch1' 2-D Convolution 256 1×1×128 convolutions with stride [2 2] and padding [0 0 0 0] (HW Layer) 30 'res4a' Addition Element-wise addition of 2 inputs (HW Layer) 31 'res4a_relu' ReLU ReLU (HW Layer) 32 'res4b_branch2a' 2-D Convolution 256 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 33 'res4b_branch2a_relu' ReLU ReLU (HW Layer) 34 'res4b_branch2b' 2-D Convolution 256 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 35 'res4b' Addition Element-wise addition of 2 inputs (HW Layer) 36 'res4b_relu' ReLU ReLU (HW Layer) 37 'res5a_branch2a' 2-D Convolution 512 3×3×256 convolutions with stride [2 2] and padding [1 1 1 1] (HW Layer) 38 'res5a_branch2a_relu' ReLU ReLU (HW Layer) 39 'res5a_branch2b' 2-D Convolution 512 3×3×512 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 40 'res5a_branch1' 2-D Convolution 512 1×1×256 convolutions with stride [2 2] and padding [0 0 0 0] (HW Layer) 41 'res5a' Addition Element-wise addition of 2 inputs (HW Layer) 42 'res5a_relu' ReLU ReLU (HW Layer) 43 'res5b_branch2a' 2-D Convolution 512 3×3×512 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 44 'res5b_branch2a_relu' ReLU ReLU (HW Layer) 45 'res5b_branch2b' 2-D Convolution 512 3×3×512 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 46 'res5b' Addition Element-wise addition of 2 inputs (HW Layer) 47 'res5b_relu' ReLU ReLU (HW Layer) 48 'pool5' 2-D Global Average Pooling 2-D global average pooling (HW Layer) 49 'new_fc' Fully Connected 5 fully connected layer (HW Layer) 50 'prob' Softmax softmax (SW Layer) 51 'new_classoutput' Classification Output crossentropyex with 'MathWorks Cap' and 4 other classes (SW Layer) ### Notice: The layer 'data' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software. ### Notice: The layer 'prob' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software. ### Notice: The layer 'new_classoutput' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software. ### Compiling layer group: conv1>>pool1 ... ### Compiling layer group: conv1>>pool1 ... complete. ### Compiling layer group: res2a_branch2a>>res2a_branch2b ... ### Compiling layer group: res2a_branch2a>>res2a_branch2b ... complete. ### Compiling layer group: res2b_branch2a>>res2b_branch2b ... ### Compiling layer group: res2b_branch2a>>res2b_branch2b ... complete. ### Compiling layer group: res3a_branch1 ... ### Compiling layer group: res3a_branch1 ... complete. ### Compiling layer group: res3a_branch2a>>res3a_branch2b ... ### Compiling layer group: res3a_branch2a>>res3a_branch2b ... complete. ### Compiling layer group: res3b_branch2a>>res3b_branch2b ... ### Compiling layer group: res3b_branch2a>>res3b_branch2b ... complete. ### Compiling layer group: res4a_branch1 ... ### Compiling layer group: res4a_branch1 ... complete. ### Compiling layer group: res4a_branch2a>>res4a_branch2b ... ### Compiling layer group: res4a_branch2a>>res4a_branch2b ... complete. ### Compiling layer group: res4b_branch2a>>res4b_branch2b ... ### Compiling layer group: res4b_branch2a>>res4b_branch2b ... complete. ### Compiling layer group: res5a_branch1 ... ### Compiling layer group: res5a_branch1 ... complete. ### Compiling layer group: res5a_branch2a>>res5a_branch2b ... ### Compiling layer group: res5a_branch2a>>res5a_branch2b ... complete. ### Compiling layer group: res5b_branch2a>>res5b_branch2b ... ### Compiling layer group: res5b_branch2a>>res5b_branch2b ... complete. ### Compiling layer group: pool5 ... ### Compiling layer group: pool5 ... complete. ### Compiling layer group: new_fc ... ### Compiling layer group: new_fc ... complete. ### Allocating external memory buffers: offset_name offset_address allocated_space _______________________ ______________ ________________ "InputDataOffset" "0x00000000" "12.0 MB" "OutputResultOffset" "0x00c00000" "4.0 MB" "SchedulerDataOffset" "0x01000000" "4.0 MB" "SystemBufferOffset" "0x01400000" "28.0 MB" "InstructionDataOffset" "0x03000000" "4.0 MB" "ConvWeightDataOffset" "0x03400000" "16.0 MB" "FCWeightDataOffset" "0x04400000" "4.0 MB" "EndOffset" "0x04800000" "Total: 72.0 MB" ### Network compilation complete. ### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA. ### Loading weights to Conv Processor. ### Conv Weights loaded. Current time is 21-Dec-2022 10:46:36 ### Loading weights to FC Processor. ### FC Weights loaded. Current time is 21-Dec-2022 10:46:36 ### Finished writing input activations. ### Running single input activation. ### Finished writing input activations. ### Running single input activation. ### Finished writing input activations. ### Running single input activation. ### Finished writing input activations. ### Running single input activation. ### Finished writing input activations. ### Running single input activation. ### Finished writing input activations. ### Running single input activation. ### Finished writing input activations. ### Running single input activation. ### Finished writing input activations. ### Running single input activation. ### Finished writing input activations. ### Running single input activation. ### Finished writing input activations. ### Running single input activation. ### Finished writing input activations. ### Running single input activation. ### Finished writing input activations. ### Running single input activation. ### Finished writing input activations. ### Running single input activation. ### Finished writing input activations. ### Running single input activation. ### Finished writing input activations. ### Running single input activation. ### Finished writing input activations. ### Running single input activation. ### Finished writing input activations. ### Running single input activation. ### Finished writing input activations. ### Running single input activation. ### Finished writing input activations. ### Running single input activation. ### Finished writing input activations. ### Running single input activation. Deep Learning Processor Bitstream Build Info Resource Utilized Total Percentage ------------------ ---------- ------------ ------------ LUTs (CLB/ALM)* 249703 274080 91.11 DSPs 391 2520 15.52 Block RAM 583 912 63.93 * LUT count represents Configurable Logic Block(CLB) utilization in Xilinx devices and Adaptive Logic Module (ALM) utilization in Intel devices. ### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer' ### Notice: The layer 'data' of type 'ImageInputLayer' is split into an image input layer 'data', an addition layer 'data_norm_add', and a multiplication layer 'data_norm' for hardware normalization. ### The network includes the following layers: 1 'data' Image Input 224×224×3 images with 'zscore' normalization (SW Layer) 2 'conv1' 2-D Convolution 64 7×7×3 convolutions with stride [2 2] and padding [3 3 3 3] (HW Layer) 3 'conv1_relu' ReLU ReLU (HW Layer) 4 'pool1' 2-D Max Pooling 3×3 max pooling with stride [2 2] and padding [1 1 1 1] (HW Layer) 5 'res2a_branch2a' 2-D Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 6 'res2a_branch2a_relu' ReLU ReLU (HW Layer) 7 'res2a_branch2b' 2-D Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 8 'res2a' Addition Element-wise addition of 2 inputs (HW Layer) 9 'res2a_relu' ReLU ReLU (HW Layer) 10 'res2b_branch2a' 2-D Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 11 'res2b_branch2a_relu' ReLU ReLU (HW Layer) 12 'res2b_branch2b' 2-D Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 13 'res2b' Addition Element-wise addition of 2 inputs (HW Layer) 14 'res2b_relu' ReLU ReLU (HW Layer) 15 'res3a_branch2a' 2-D Convolution 128 3×3×64 convolutions with stride [2 2] and padding [1 1 1 1] (HW Layer) 16 'res3a_branch2a_relu' ReLU ReLU (HW Layer) 17 'res3a_branch2b' 2-D Convolution 128 3×3×128 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 18 'res3a_branch1' 2-D Convolution 128 1×1×64 convolutions with stride [2 2] and padding [0 0 0 0] (HW Layer) 19 'res3a' Addition Element-wise addition of 2 inputs (HW Layer) 20 'res3a_relu' ReLU ReLU (HW Layer) 21 'res3b_branch2a' 2-D Convolution 128 3×3×128 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 22 'res3b_branch2a_relu' ReLU ReLU (HW Layer) 23 'res3b_branch2b' 2-D Convolution 128 3×3×128 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 24 'res3b' Addition Element-wise addition of 2 inputs (HW Layer) 25 'res3b_relu' ReLU ReLU (HW Layer) 26 'res4a_branch2a' 2-D Convolution 256 3×3×128 convolutions with stride [2 2] and padding [1 1 1 1] (HW Layer) 27 'res4a_branch2a_relu' ReLU ReLU (HW Layer) 28 'res4a_branch2b' 2-D Convolution 256 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 29 'res4a_branch1' 2-D Convolution 256 1×1×128 convolutions with stride [2 2] and padding [0 0 0 0] (HW Layer) 30 'res4a' Addition Element-wise addition of 2 inputs (HW Layer) 31 'res4a_relu' ReLU ReLU (HW Layer) 32 'res4b_branch2a' 2-D Convolution 256 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 33 'res4b_branch2a_relu' ReLU ReLU (HW Layer) 34 'res4b_branch2b' 2-D Convolution 256 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 35 'res4b' Addition Element-wise addition of 2 inputs (HW Layer) 36 'res4b_relu' ReLU ReLU (HW Layer) 37 'res5a_branch2a' 2-D Convolution 512 3×3×256 convolutions with stride [2 2] and padding [1 1 1 1] (HW Layer) 38 'res5a_branch2a_relu' ReLU ReLU (HW Layer) 39 'res5a_branch2b' 2-D Convolution 512 3×3×512 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 40 'res5a_branch1' 2-D Convolution 512 1×1×256 convolutions with stride [2 2] and padding [0 0 0 0] (HW Layer) 41 'res5a' Addition Element-wise addition of 2 inputs (HW Layer) 42 'res5a_relu' ReLU ReLU (HW Layer) 43 'res5b_branch2a' 2-D Convolution 512 3×3×512 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 44 'res5b_branch2a_relu' ReLU ReLU (HW Layer) 45 'res5b_branch2b' 2-D Convolution 512 3×3×512 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 46 'res5b' Addition Element-wise addition of 2 inputs (HW Layer) 47 'res5b_relu' ReLU ReLU (HW Layer) 48 'pool5' 2-D Global Average Pooling 2-D global average pooling (HW Layer) 49 'new_fc' Fully Connected 5 fully connected layer (HW Layer) 50 'prob' Softmax softmax (SW Layer) 51 'new_classoutput' Classification Output crossentropyex with 'MathWorks Cap' and 4 other classes (SW Layer) ### Notice: The layer 'prob' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software. ### Notice: The layer 'new_classoutput' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software. Deep Learning Processor Estimator Performance Results LastFrameLatency(cycles) LastFrameLatency(seconds) FramesNum Total Latency Frames/s ------------- ------------- --------- --------- --------- Network 23502752 0.10683 1 23502752 9.4 data_norm_add 210750 0.00096 data_norm 210750 0.00096 conv1 2164124 0.00984 pool1 515064 0.00234 res2a_branch2a 966221 0.00439 res2a_branch2b 966221 0.00439 res2a 210750 0.00096 res2b_branch2a 966221 0.00439 res2b_branch2b 966221 0.00439 res2b 210750 0.00096 res3a_branch1 540861 0.00246 res3a_branch2a 540749 0.00246 res3a_branch2b 919117 0.00418 res3a 105404 0.00048 res3b_branch2a 919117 0.00418 res3b_branch2b 919117 0.00418 res3b 105404 0.00048 res4a_branch1 503405 0.00229 res4a_branch2a 509261 0.00231 res4a_branch2b 905421 0.00412 res4a 52724 0.00024 res4b_branch2a 905421 0.00412 res4b_branch2b 905421 0.00412 res4b 52724 0.00024 res5a_branch1 1039437 0.00472 res5a_branch2a 1046605 0.00476 res5a_branch2b 2005197 0.00911 res5a 26368 0.00012 res5b_branch2a 2005197 0.00911 res5b_branch2b 2005197 0.00911 res5b 26368 0.00012 pool5 54594 0.00025 new_fc 22571 0.00010 * The clock frequency of the DL processor is: 220MHz Deep Learning Processor Bitstream Build Info Resource Utilized Total Percentage ------------------ ---------- ------------ ------------ LUTs (CLB/ALM)* 168099 274080 61.33 DSPs 807 2520 32.02 Block RAM 453 912 49.67 * LUT count represents Configurable Logic Block(CLB) utilization in Xilinx devices and Adaptive Logic Module (ALM) utilization in Intel devices. ### Finished writing input activations. ### Running single input activation.
predictionFPGA = struct with fields:
NumSamples: 20
MetricResults: [1×1 struct]
Statistics: [2×7 table]
View the frames per second performance for the quantized network and single-data-type network. The quantized network has a performance of 33.8 frames per second compared to 9.2 frames per second for the single-data-type network. You can use quantization to improve your frames per second performance, however you could lose accuracy when you quantize your networks.
predictionFPGA.Statistics.FramesPerSecond
ans = 2×1
9.3606
33.7719
Version History
Introduced in R2020b
See Also
compile
| getBuildInfo
| predict
| dlquantizer
| dlquantizationOptions
| calibrate
| validate
| predictAndUpdateState
| resetState
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)