Main Content

Run Sequence-to-Sequence Classification on Intel FPGA

This example shows how to create, compile, and deploy a long short-term memory (LSTM) network trained on accelerometer data from human movement by using the Deep Learning HDL Toolbox™ Support Package for Intel® FPGA and SoC. Use the deployed network to classify human activity based on sequence input data. Use MATLAB® to retrieve the prediction results from the target device.

This example uses the network trained in the Sequence-to-Sequence Classification Using Deep Learning. This example uses sensor data obtained from a smartphone worn on the body and deploys an LSTM network trained to recognize the activity of the wearer based on time series data that represents accelerometer readings in three different directions. The graphs below show the raw data for these accelerometer readings over time and the resulting classifications. The training data contains time series data for seven people. Each sequence has three features and varies in length. The data set contains six training observations and one test observation.

ClassificationResultImage.png

Prerequisites

  • Intel Arria® 10 SoC development board

  • Deep Learning HDL Toolbox™ Support Package for Intel® FPGA and SoC

  • Deep Learning Toolbox™

  • Deep Learning HDL Toolbox™

Load the Pretrained Network

To load the pretrained human body movement network, enter:

load SequenceToSequenceClassification

View the layers of the network by using the Deep Network Designer app.

deepNetworkDesigner(net)

Define FPGA Board Interface

Define the target FPGA board programming interface by creating a dlhdl.Target object. Specify that the interface is for a Intel board with a JTAG interface.

To create the target object, enter:

hTarget = dlhdl.Target("Intel");

To use the JTAG interface, install Intel™ Quartus™ Prime Standard Edition 22.1. To set the Intel™ Quartus™ Prime Standard Edition tool path, enter:

hdlsetuptoolpath('ToolName', 'Altera Quartus II', 'ToolPath', 'C:\altera\22.1\quartus\bin64');

Prepare Network for Deployment

Prepare the network for deployment by creating a dlhdl.Workflow object. Specify the network and bitstream name. Ensure that the bitstream name matches the data type and FPGA board. In this example, the target FPGA board is the Intel Arria 10 SOC board. The bitstream uses a single data type.

hW = dlhdl.Workflow('network',net,'Bitstream','arria10soc_lstm_single','Target',hTarget);

Compile Network

Run the compile method of the dlhdl.Workflow object to compile the network and generate the instructions, weights, and biases for deployment. Because the total number of frames exceeds the default value, set the InputFrameNumberLimit name-value argument to 10000 to run predictions in chunks of 10,000 frames and prevent timeouts.

dn = compile(hW,'InputFrameNumberLimit',10000)
### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream arria10soc_lstm_single.
### The network includes the following layers:
     1   'sequenceinput'   Sequence Input          Sequence input with 3 dimensions                   (SW Layer)
     2   'lstm'            LSTM                    LSTM with 200 hidden units                         (HW Layer)
     3   'fc'              Fully Connected         5 fully connected layer                            (HW Layer)
     4   'softmax'         Softmax                 softmax                                            (SW Layer)
     5   'classoutput'     Classification Output   crossentropyex with 'Dancing' and 4 other classes  (SW Layer)
                                                                                                    
### Notice: The layer 'sequenceinput' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'softmax' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software.
### Notice: The layer 'classoutput' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.
### Compiling layer group: lstm.wi ...
### Compiling layer group: lstm.wi ... complete.
### Compiling layer group: lstm.wo ...
### Compiling layer group: lstm.wo ... complete.
### Compiling layer group: lstm.wg ...
### Compiling layer group: lstm.wg ... complete.
### Compiling layer group: lstm.wf ...
### Compiling layer group: lstm.wf ... complete.
### Compiling layer group: fc ...
### Compiling layer group: fc ... complete.

### Allocating external memory buffers:

          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "4.0 MB"        
    "OutputResultOffset"        "0x00400000"     "4.0 MB"        
    "SchedulerDataOffset"       "0x00800000"     "4.0 MB"        
    "SystemBufferOffset"        "0x00c00000"     "20.0 MB"       
    "InstructionDataOffset"     "0x02000000"     "4.0 MB"        
    "FCWeightDataOffset"        "0x02400000"     "4.0 MB"        
    "EndOffset"                 "0x02800000"     "Total: 40.0 MB"

### Network compilation complete.
dn = struct with fields:
             weights: [1×1 struct]
        instructions: [1×1 struct]
           registers: [1×1 struct]
    syncInstructions: [1×1 struct]
        constantData: {}
             ddrInfo: [1×1 struct]

Program Bitstream on FPGA and Download Network Weights

To deploy the network on the Intel Arria 10 SoC hardware, run the deploy method of the dlhdl.Workflow object. This function uses the output of the compile function to program the FPGA board and download the network weights and biases. The deploy function programs the FPGA device and displays progress messages, and the required time to deploy the network.

 deploy(hW)
### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.

Load Human Activity Test Data

Load the test data and classify the activity at each time step. Each sequence has three features and varies in length. The three features correspond to the accelerometer readings in three different directions.

Load the human activity test data. XTest contains a single sequence of dimension 3. YTest contains a sequence of categorical labels that correspond to the activity at each time step.

load HumanActivityTest
numFeatures = 3;
figure
plot(XTest{1}')
xlabel("Time Step")
legend("Feature " + (1:numFeatures))
title("Test Data")

Run the Prediction

Classify the test data by using the classify function.

YPred = classify(hW.Network, XTest{1});

Calculate the accuracy of the prediction.

acc = sum(YPred == YTest{1})./numel(YTest{1})
acc = 0.9995

Compare the predictions with the test data by using a plot.

figure
plot(YPred,'.-')
hold on
plot(YTest{1})
hold off

xlabel("Time Step")
ylabel("Activity")
title("Predicted Activities")
legend(["Predicted" "Test Data"])

Compare this graph to the output of the predict method.

Run the predict method of the dlhdl.Workflow object, to retrieve the hardware prediction results.

predictions = hW.predict(XTest{1}(:,1:10000),Profile='on');
### Resetting network state.
### Finished writing input activations.
### Running a sequence of length 10000.


              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                      18463                  0.00012                   10000          185724803           8076.5
    memSeparator_0              78                  0.00000 
    lstm.wi                   3838                  0.00003 
    lstm.wo                   3909                  0.00003 
    lstm.wg                   3828                  0.00003 
    lstm.wf                   3938                  0.00003 
    lstm.sigmoid_1             295                  0.00000 
    lstm.sigmoid_3             267                  0.00000 
    lstm.tanh_1                267                  0.00000 
    lstm.sigmoid_2             267                  0.00000 
    lstm.multiplication_2       297                  0.00000 
    lstm.multiplication_1       267                  0.00000 
    lstm.c_add                 251                  0.00000 
    lstm.tanh_2                271                  0.00000 
    lstm.multiplication_3       261                  0.00000 
    fc                         429                  0.00000 
 * The clock frequency of the DL processor is: 150MHz
predictions = horzcat(predictions, hW.predict(XTest{1}(:,10001:20000),Profile='on'));
### Resetting network state.
### Finished writing input activations.
### Running a sequence of length 10000.


              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                      18363                  0.00012                   10000          185714233           8076.9
    memSeparator_0              78                  0.00000 
    lstm.wi                   3828                  0.00003 
    lstm.wo                   3799                  0.00003 
    lstm.wg                   3818                  0.00003 
    lstm.wf                   3929                  0.00003 
    lstm.sigmoid_1             264                  0.00000 
    lstm.sigmoid_3             317                  0.00000 
    lstm.tanh_1                267                  0.00000 
    lstm.sigmoid_2             267                  0.00000 
    lstm.multiplication_2       267                  0.00000 
    lstm.multiplication_1       307                  0.00000 
    lstm.c_add                 251                  0.00000 
    lstm.tanh_2                271                  0.00000 
    lstm.multiplication_3       251                  0.00000 
    fc                         449                  0.00000 
 * The clock frequency of the DL processor is: 150MHz
predictions = horzcat(predictions, hW.predict(XTest{1}(:,20001:30000),Profile='on'));
### Resetting network state.
### Finished writing input activations.
### Running a sequence of length 10000.


              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                      18512                  0.00012                   10000          185720452           8076.7
    memSeparator_0              78                  0.00000 
    lstm.wi                   3898                  0.00003 
    lstm.wo                   3859                  0.00003 
    lstm.wg                   3868                  0.00003 
    lstm.wf                   4018                  0.00003 
    lstm.sigmoid_1             284                  0.00000 
    lstm.sigmoid_3             267                  0.00000 
    lstm.tanh_1                267                  0.00000 
    lstm.sigmoid_2             257                  0.00000 
    lstm.multiplication_2       257                  0.00000 
    lstm.multiplication_1       257                  0.00000 
    lstm.c_add                 251                  0.00000 
    lstm.tanh_2                271                  0.00000 
    lstm.multiplication_3       251                  0.00000 
    fc                         429                  0.00000 
 * The clock frequency of the DL processor is: 150MHz
predictions = horzcat(predictions, hW.predict(XTest{1}(:,30001:40000),Profile='on'));
### Resetting network state.
### Finished writing input activations.
### Running a sequence of length 10000.


              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                      18472                  0.00012                   10000          185722743           8076.6
    memSeparator_0              78                  0.00000 
    lstm.wi                   3858                  0.00003 
    lstm.wo                   3888                  0.00003 
    lstm.wg                   3838                  0.00003 
    lstm.wf                   4009                  0.00003 
    lstm.sigmoid_1             264                  0.00000 
    lstm.sigmoid_3             267                  0.00000 
    lstm.tanh_1                270                  0.00000 
    lstm.sigmoid_2             264                  0.00000 
    lstm.multiplication_2       257                  0.00000 
    lstm.multiplication_1       267                  0.00000 
    lstm.c_add                 251                  0.00000 
    lstm.tanh_2                271                  0.00000 
    lstm.multiplication_3       261                  0.00000 
    fc                         429                  0.00000 
 * The clock frequency of the DL processor is: 150MHz
predictions = horzcat(predictions, hW.predict(XTest{1}(:,40001:50000),Profile='on'));
### Resetting network state.
### Finished writing input activations.
### Running a sequence of length 10000.


              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                      18475                  0.00012                   10000          185720273           8076.7
    memSeparator_0              78                  0.00000 
    lstm.wi                   3858                  0.00003 
    lstm.wo                   3879                  0.00003 
    lstm.wg                   3849                  0.00003 
    lstm.wf                   4019                  0.00003 
    lstm.sigmoid_1             285                  0.00000 
    lstm.sigmoid_3             257                  0.00000 
    lstm.tanh_1                267                  0.00000 
    lstm.sigmoid_2             277                  0.00000 
    lstm.multiplication_2       257                  0.00000 
    lstm.multiplication_1       257                  0.00000 
    lstm.c_add                 251                  0.00000 
    lstm.tanh_2                261                  0.00000 
    lstm.multiplication_3       251                  0.00000 
    fc                         429                  0.00000 
 * The clock frequency of the DL processor is: 150MHz
predictions = horzcat(predictions, hW.predict(XTest{1}(:,50001:end),Profile='on'));
### Resetting network state.
### Finished writing input activations.
### Running a sequence of length 3888.


              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                      18253                  0.00012                    3888           72208234           8076.6
    memSeparator_0              78                  0.00000 
    lstm.wi                   3838                  0.00003 
    lstm.wo                   3798                  0.00003 
    lstm.wg                   3838                  0.00003 
    lstm.wf                   3899                  0.00003 
    lstm.sigmoid_1             265                  0.00000 
    lstm.sigmoid_3             267                  0.00000 
    lstm.tanh_1                267                  0.00000 
    lstm.sigmoid_2             287                  0.00000 
    lstm.multiplication_2       257                  0.00000 
    lstm.multiplication_1       257                  0.00000 
    lstm.c_add                 251                  0.00000 
    lstm.tanh_2                271                  0.00000 
    lstm.multiplication_3       251                  0.00000 
    fc                         429                  0.00000 
 * The clock frequency of the DL processor is: 150MHz
save("hardwarepredictions.mat","predictions")
indices = [];
actions = [];
for x = 1:length(YPred)
    [r,i] = max(predictions(:,x));
    indices = [indices i];
    switch i 
        case 1
            actions = [actions categorical("Dancing")];
        case 2 
            actions = [actions categorical("Running")];
        case 5
            actions = [actions categorical("Walking")];
        case 4
            actions = [actions categorical("Standing")];
        case 3
            actions = [actions categorical("Sitting")];
    end
end

Calculate the accuracy of the FPGA board prediction.

accFPGA = sum(actions == YTest{1})./numel(YTest{1})
accFPGA = 0.9958

Plot the comparison between the FPGA board predictions and test data.

figure
plot(actions,'.-')
hold on
plot(YTest{1})
hold off

xlabel("Time Step")
ylabel("Activity")
title("Predicted Activities")
legend(["Predicted" "Test Data"])

The hardware-predicted activities are similar to the activities classified by the classify function.

See Also

| | | | | |

Related Topics

Go to top of page