convert2daily
Description
Examples
Aggregate Timetable Data to Daily Periodicity
Load the simulated stock price data and corresponding logarithmic returns in SimulatedStockSeries.mat
.
load SimulatedStockSeries
The timetable DataTimeTable
contains measurements recorded at various, irregular times during trading hours (09:30 to 16:00) of the New York Stock Exchange (NYSE) from January 1, 2018, through December 31, 2020.
For example, display the first few observations.
head(DataTimeTable)
Time Price Log_Return ____________________ ______ __________ 01-Jan-2018 11:52:48 100 -0.025375 01-Jan-2018 13:23:13 101.14 0.011336 01-Jan-2018 14:45:09 101.5 0.0035531 01-Jan-2018 15:30:30 100.15 -0.01339 02-Jan-2018 10:43:37 99.72 -0.0043028 03-Jan-2018 10:02:21 100.11 0.0039033 03-Jan-2018 11:22:37 103.96 0.037737 03-Jan-2018 13:42:27 107.05 0.02929
DataTimeTable
does not include business calendar awareness. If you want to account for nonbusiness days (weekends, holidays, and market closures) and you have a Financial Toolbox™ license, add business calendar awareness by using the addBusinessCalendar
function.
Aggregate the daily price series to a daily series by reporting the final price of each day.
DailyPrice = convert2daily(DataTimeTable(:,"Price"));
tail(DailyPrice)
Time Price ___________ ______ 24-Dec-2020 286.35 25-Dec-2020 286.26 26-Dec-2020 285.68 27-Dec-2020 285.61 28-Dec-2020 294.36 29-Dec-2020 300.44 30-Dec-2020 303.84 31-Dec-2020 301.04
DailyPrice
is a timetable containing the final prices for each reported day in DataTimeTable
.
Specify Aggregation Method for Each Variable
This example shows how to specify the appropriate aggregation method for the units of a variable.
Load the simulated stock price data and corresponding logarithmic returns in SimulatedStockSeries.mat
.
load SimulatedStockSeries
The price series Price
contains absolute measurements, whereas the log returns series Log_Return
is the rate of change of the price series among successive observations. Because the series have different units, you must specify the appropriate method when you aggregate the series. Specifically, if you report the final price for a given periodicity, you must report the sum of the log returns within each period.
Aggregate the data so that the result has a daily periodicity. For each series, specify the aggregation method that is appropriate for the unit.
DailyTT = convert2daily(DataTimeTable,Aggregation=["lastvalue" "sum"])
DailyTT=1096×2 timetable
Time Price Log_Return
___________ ______ __________
01-Jan-2018 100.15 -0.023876
02-Jan-2018 99.72 -0.0043028
03-Jan-2018 105.57 0.057008
04-Jan-2018 109.01 0.032065
05-Jan-2018 110.69 0.015294
06-Jan-2018 110.48 -0.001899
07-Jan-2018 113.83 0.029872
08-Jan-2018 116.41 0.022412
09-Jan-2018 118.54 0.018132
10-Jan-2018 120.46 0.016067
11-Jan-2018 120.87 0.0033978
12-Jan-2018 119.91 -0.0079741
13-Jan-2018 117.38 -0.021325
14-Jan-2018 116.04 -0.011482
15-Jan-2018 114.72 -0.011441
16-Jan-2018 115.28 0.0048696
⋮
DailyTT1
is a timetable containing the daily final prices and log returns.
Verify the results for January 1, 2018, through January 3, 2018.
jan42018 = datetime(2018,01,04); DataTimeTable(DataTimeTable.Time < jan42018,:)
ans=9×2 timetable
Time Price Log_Return
____________________ ______ __________
01-Jan-2018 11:52:48 100 -0.025375
01-Jan-2018 13:23:13 101.14 0.011336
01-Jan-2018 14:45:09 101.5 0.0035531
01-Jan-2018 15:30:30 100.15 -0.01339
02-Jan-2018 10:43:37 99.72 -0.0043028
03-Jan-2018 10:02:21 100.11 0.0039033
03-Jan-2018 11:22:37 103.96 0.037737
03-Jan-2018 13:42:27 107.05 0.02929
03-Jan-2018 14:45:20 105.57 -0.013922
DailyTT(DailyTT.Time < jan42018,:)
ans=3×2 timetable
Time Price Log_Return
___________ ______ __________
01-Jan-2018 100.15 -0.023876
02-Jan-2018 99.72 -0.0043028
03-Jan-2018 105.57 0.057008
By visual comparison, the daily final results match. Each computed daily log return is the sum of the log returns recorded during the corresponding day in the raw data. Cross-check the log returns of January 2 and 3 by computing the difference between the log final prices for each day.
verify = diff(log(DailyTT.Price)); verify(1:2)
ans = 2×1
-0.0043
0.0570
Input Arguments
TT1
— Data to aggregate to daily periodicity
timetable
Data to aggregate to a daily periodicity, specified as a timetable.
Each variable can be a numeric vector (univariate series) or numeric matrix (multivariate series).
Note
NaN
s indicate missing values.Timestamps must be in ascending or descending order.
By default, all days are business days. If your timetable does not account for nonbusiness
days (weekends, holidays, and market closures), add business calendar awareness by using
addBusinessCalendar
first. For example, the following command adds business calendar logic to include only NYSE
business
days.
TT = addBusinessCalendar(TT);
Data Types: timetable
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Example: TT2 = convert2daily(TT1,'Aggregation',["lastvalue"
"sum"])
Aggregation
— Intra-day aggregation method for data in TT1
"lastvalue"
(default) | "sum"
| "prod"
| "mean"
| "min"
| "max"
| "firstvalue"
| character vector | function handle | string vector | cell vector of character vectors or function handles
Intra-day aggregation method for TT1
defining
how data is aggregated over business days, specified as one of
the following methods, a string vector of methods, or a length
numVariables
cell vector of methods,
where numVariables
is the number of variables
in TT1
.
"sum"
— Sum the values in each year or day."mean"
— Calculate the mean of the values in each year or day."prod"
— Calculate the product of the values in each year or day."min"
— Calculate the minimum of the values in each year or day."max"
— Calculate the maximum of the values in each year or day."firstvalue"
— Use the first value in each year or day."lastvalue"
— Use the last value in each year or day.@customfcn
— A custom aggregation method that accepts a timetable and returns a numeric scalar (for univariate series) or row vector (for multivariate series). The function must accept empty inputs[]
.
If you specify a single method, convert2daily
applies the specified method to all time series in TT1
. If you specify a string vector or cell vector aggregation
, convert2daily
applies aggregation(
to j
)TT1(:,
; j
)convert2daily
applies each aggregation method one at a time (for more details, see retime
). For example, consider a daily timetable
representing TT1
with three variables.
Time AAA BBB CCC ____________________ ______ ______ ________________ 01-Jan-2018 09:45:47 100.00 200.00 300.00 400.00 01-Jan-2018 12:48:09 100.03 200.06 300.09 400.12 02-Jan-2018 10:27:32 100.07 200.14 300.21 400.28 02-Jan-2018 12:46:09 100.08 200.16 300.24 400.32 02-Jan-2018 14:14:13 100.25 200.50 300.75 401.00 02-Jan-2018 15:52:31 100.19 200.38 300.57 400.76 03-Jan-2018 09:47:11 100.54 201.08 301.62 402.16 03-Jan-2018 11:24:23 100.59 201.18 301.77 402.36 03-Jan-2018 14:41:17 101.40 202.80 304.20 405.60 03-Jan-2018 16:00:00 101.94 203.88 305.82 407.76 04-Jan-2018 09:55:51 102.53 205.06 307.59 410.12 04-Jan-2018 10:07:12 103.35 206.70 310.05 413.40 04-Jan-2018 14:26:23 103.40 206.80 310.20 413.60 05-Jan-2018 13:13:12 103.91 207.82 311.73 415.64 05-Jan-2018 14:57:53 103.89 207.78 311.67 415.56
TT2
(where the
'lastvalue'
is reported for each day) are
as
follows.Time AAA BBB CCC ___________ ______ ______ ________________ 01-Jan-2018 100.03 200.06 300.09 400.12 02-Jan-2018 100.19 200.38 300.57 400.76 03-Jan-2018 101.94 203.88 305.82 407.76 04-Jan-2018 103.40 206.80 310.20 413.60 05-Jan-2018 103.89 207.78 311.67 415.56
All methods omit missing data (NaN
s) in direct aggregation calculations on each variable. However, for situations in which missing values appear in the first row of TT1
, missing values can also appear in the aggregated results TT2
. To address missing data, write and specify a custom aggregation method (function handle) that supports missing data.
Data Types: char
| string
| cell
| function_handle
Output Arguments
TT2
— Daily data
timetable
Daily data, returned as a timetable. The time arrangement of TT1
and TT2
are the same.
If a variable of TT1
has no records for a
business day within the sampling time span,
convert2daily
returns a NaN
for that variable and business day in TT2
.
The first date in TT2
is the first business date
on or after the first date in TT1
. The last date
in TT2
is the last business date on or before the
last date in TT1
.
Version History
Introduced in R2021a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)