price
Compute price for equity instrument with FFT pricer
Syntax
Description
[
          computes the instrument price and related pricing information based on the pricing object
            Price,PriceResult] = price(inpPricer,inpInstrument)inpPricer and the instrument object
            inpInstrument. 
[
          adds an optional argument to specify sensitivities.Price,PriceResult] = price(___,inpSensitivity)
Examples
This example shows the workflow to price a Vanilla instrument when you use a Heston model and an FFT pricing method.
Create Vanilla Instrument Object
Use fininstrument to create a Vanilla instrument object. 
VanillaOpt = fininstrument("Vanilla",'ExerciseDate',datetime(2022,9,15),'Strike',105,'ExerciseStyle',"european",'Name',"vanilla_option")
VanillaOpt = 
  Vanilla with properties:
       OptionType: "call"
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2022
           Strike: 105
             Name: "vanilla_option"
Create Heston Model Object
Use finmodel to create a Heston model object.
HestonModel = finmodel("Heston",'V0',0.032,'ThetaV',0.1,'Kappa',0.003,'SigmaV',0.2,'RhoSV',0.9)
HestonModel = 
  Heston with properties:
        V0: 0.0320
    ThetaV: 0.1000
     Kappa: 0.0030
    SigmaV: 0.2000
     RhoSV: 0.9000
Create ratecurve Object
Create a flat ratecurve object using ratecurve. 
Settle = datetime(2018,9,15); Maturity = datetime(2023,9,15); Rate = 0.035; myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)
myRC = 
  ratecurve with properties:
                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"
Create FFT Pricer Object
Use finpricer to create an FFT pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
outPricer = finpricer("fft",'DiscountCurve',myRC,'Model',HestonModel,'SpotPrice',100,'CharacteristicFcnStep', 0.2,'NumFFT',2^13)
outPricer = 
  FFT with properties:
                    Model: [1×1 finmodel.Heston]
            DiscountCurve: [1×1 ratecurve]
                SpotPrice: 100
             DividendType: "continuous"
            DividendValue: 0
                   NumFFT: 8192
    CharacteristicFcnStep: 0.2000
            LogStrikeStep: 0.0038
        CharacteristicFcn: @characteristicFcnHeston
            DampingFactor: 1.5000
               Quadrature: "simpson"
           VolRiskPremium: 0
               LittleTrap: 1
Price Vanilla Instrument
Use price to compute the price and sensitivities for the Vanilla instrument.
[Price, outPR] = price(outPricer,VanillaOpt,["all"])Price = 14.7545
outPR = 
  priceresult with properties:
       Results: [1×7 table]
    PricerData: []
outPR.Results
ans=1×7 table
    Price      Delta      Gamma       Theta       Rho       Vega     VegaLT
    ______    _______    ________    ________    ______    ______    ______
    14.754    0.44868    0.021649    -0.20891    120.45    88.192    1.3248
Input Arguments
Instrument object, specified as a scalar or vector of  Vanilla instrument objects.
            Use fininstrument to create
              Vanilla instrument
            objects.
Data Types: object
(Optional) List of sensitivities to compute, specified as a
              NOUT-by-1 or a
              1-by-NOUT cell array of character vectors or
            string array with possible values of 'Price',
              'Delta', 'Gamma', 'Vega',
              'Rho', 'Theta', 'Vegalt', and
              'All'.
inpSensitivity = {'All'} or inpSensitivity =
              ["All"] specifies that the output is 'Delta',
              'Gamma', 'Vega', 'Rho',
              'Theta', 'Vegalt', and
              'Price'. This is the same as specifying
              inpSensitivity to include each sensitivity.
Example: inpSensitivity =
              {'delta','gamma','vega','rho','theta','vegalt','price'}
Data Types: string | cell
Output Arguments
Instrument price, returned as a numeric.
Price result, returned as a PriceResult object. The object has
            the following fields:
- PriceResult.Results— Table of results that includes sensitivities (if you specify- inpSensitivity)
- PriceResult.PricerData— Structure for pricer data
More About
A delta sensitivity measures the rate at which the price of an option is expected to change relative to a $1 change in the price of the underlying asset.
Delta is not a static measure; it changes as the price of the underlying asset changes (a concept known as gamma sensitivity), and as time passes. Options that are near the money or have longer until expiration are more sensitive to changes in delta.
A gamma sensitivity measures the rate of change of an option's delta in response to a change in the price of the underlying asset.
In other words, while delta tells you how much the price of an option might move, gamma tells you how fast the option's delta itself will change as the price of the underlying asset moves. This is important because this helps you understand the convexity of an option's value in relation to the underlying asset's price.
A vega sensitivity measures the sensitivity of an option's price to changes in the volatility of the underlying asset.
Vega represents the amount by which the price of an option would be expected to change for a 1% change in the implied volatility of the underlying asset. Vega is expressed as the amount of money per underlying share that the option's value will gain or lose as volatility rises or falls.
A theta sensitivity measures the rate at which the price of an option decreases as time passes, all else being equal.
Theta is essentially a quantification of time decay, which is a key concept in options pricing. Theta provides an estimate of the dollar amount that an option's price would decrease each day, assuming no movement in the price of the underlying asset and no change in volatility.
A rho sensitivity measures the rate at which the price of an option is expected to change in response to a change in the risk-free interest rate.
Rho is expressed as the amount of money an option's price would gain or lose for a one percentage point (1%) change in the risk-free interest rate.
A vegalt sensitivity measures the sensitivity of an option's price to changes in the long-term volatility of the underlying asset.
Version History
Introduced in R2020a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Seleccione un país/idioma
Seleccione un país/idioma para obtener contenido traducido, si está disponible, y ver eventos y ofertas de productos y servicios locales. Según su ubicación geográfica, recomendamos que seleccione: .
También puede seleccionar uno de estos países/idiomas:
Cómo obtener el mejor rendimiento
Seleccione China (en idioma chino o inglés) para obtener el mejor rendimiento. Los sitios web de otros países no están optimizados para ser accedidos desde su ubicación geográfica.
América
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)