price
Syntax
Description
[
          computes the equity instrument price and related pricing information based on the pricing
          object Price,PriceResult] = price(inpPricer,inpInstrument)inpPricer and the instrument object
            inpInstrument.
[
          adds an optional argument to specify sensitivities. Use this syntax with the input
          argument combination in the previous syntax.Price,PriceResult] = price(___,inpSensitivity)
Examples
This example shows the workflow to price a fixed-strike Asian instrument when you use a RoughBergomi model and an RoughVolMonteCarlo pricing method. 
Create Asian Instrument Object
Use fininstrument to create an Asian instrument object. 
AsianOpt = fininstrument("Asian",'ExerciseDate',datetime(2019,1,30),'Strike',1000,'OptionType',"put",'Name',"asian_option")
AsianOpt = 
  Asian with properties:
          OptionType: "put"
              Strike: 1000
         AverageType: "arithmetic"
        AveragePrice: 0
    AverageStartDate: NaT
       ExerciseStyle: "european"
        ExerciseDate: 30-Jan-2019
                Name: "asian_option"
Create RoughBergomi Model Object
Use finmodel to create a RoughBergomi model object. 
RoughBergomiModel = finmodel("RoughBergomi",Alpha=-0.32, Xi=0.1,Eta=0.003,RhoSV=0.9)RoughBergomiModel = 
  RoughBergomi with properties:
    Alpha: -0.3200
       Xi: 0.1000
      Eta: 0.0030
    RhoSV: 0.9000
Create ratecurve Object
Create a flat ratecurve object using ratecurve. 
Settle = datetime(2018,9,15); Maturity = datetime(2023,9,15); Rate = 0.035; myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)
myRC = 
  ratecurve with properties:
                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"
Create RoughVolMonteCarlo Pricer Object
Use finpricer to create an RoughVolMonteCarlo pricer object and use the ratecurve object for the 'DiscountCurve' name-value argument.
outPricer = finpricer("RoughVolMonteCarlo",DiscountCurve=myRC,Model=RoughBergomiModel,SpotPrice=900,simulationDates=datetime(2019,1,30))outPricer = 
  RoughBergomiMonteCarlo with properties:
           DiscountCurve: [1×1 ratecurve]
               SpotPrice: 900
         SimulationDates: 30-Jan-2019
               NumTrials: 1000
           RandomNumbers: []
                   Model: [1×1 finmodel.RoughBergomi]
            DividendType: "continuous"
           DividendValue: 0
        MonteCarloMethod: "standard"
    BrownianMotionMethod: "standard"
Price Asian Instrument
Use price to compute the price and sensitivities for the Asian instrument.
[Price, outPR] = price(outPricer,AsianOpt,"all")Price = 103.0639
outPR = 
  priceresult with properties:
       Results: [1×7 table]
    PricerData: [1×1 struct]
outPR.Results
ans=1×7 table
    Price      Delta        Gamma      Lambda       Rho       Theta      Vega 
    ______    ________    _________    _______    _______    _______    ______
    103.06    -0.77793    0.0024128    -6.7932    -166.05    -1.4838    88.272
Since R2024b
This example shows the workflow to price a fixed-strike Asian instrument when you use a RoughHeston model and a RoughVolMonteCarlo pricing method. 
Create Asian Instrument Object
Use fininstrument to create an Asian instrument object. 
AsianOpt = fininstrument("Asian",ExerciseDate=datetime(2019,1,30),Strike=1000,OptionType="put",Name="asian_option")
AsianOpt = 
  Asian with properties:
          OptionType: "put"
              Strike: 1000
         AverageType: "arithmetic"
        AveragePrice: 0
    AverageStartDate: NaT
       ExerciseStyle: "european"
        ExerciseDate: 30-Jan-2019
                Name: "asian_option"
Create RoughHeston Model Object
Use finmodel to create a RoughHeston model object. 
RoughHestonModel = finmodel("RoughHeston",V0=0.4,ThetaV=0.3,Kappa=0.2,SigmaV=0.1,Alpha=-0.02,RhoSV=0.3)RoughHestonModel = 
  RoughHeston with properties:
     Alpha: -0.0200
        V0: 0.4000
    ThetaV: 0.3000
     Kappa: 0.2000
    SigmaV: 0.1000
     RhoSV: 0.3000
Create ratecurve Object
Create a flat ratecurve object using ratecurve. 
Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,Basis=12)myRC = 
  ratecurve with properties:
                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"
Create RoughVolMonteCarlo Pricer Object
Use finpricer to create a RoughVolMonteCarlo pricer object and use the ratecurve object for the DiscountCurve name-value argument.
outPricer = finpricer("RoughVolMonteCarlo",DiscountCurve=myRC,Model=RoughHestonModel,SpotPrice=900,simulationDates=datetime(2019,1,30))outPricer = 
  RoughHestonMonteCarlo with properties:
           DiscountCurve: [1×1 ratecurve]
               SpotPrice: 900
         SimulationDates: 30-Jan-2019
               NumTrials: 1000
           RandomNumbers: []
                   Model: [1×1 finmodel.RoughHeston]
            DividendType: "continuous"
           DividendValue: 0
        MonteCarloMethod: "standard"
    BrownianMotionMethod: "standard"
Price Asian Instrument
Use price to compute the price and sensitivities for the Asian instrument.
[Price, outPR] = price(outPricer,AsianOpt,"all")Price = 131.2194
outPR = 
  priceresult with properties:
       Results: [1×8 table]
    PricerData: [1×1 struct]
outPR.Results
ans=1×8 table
    Price      Delta       Gamma     Lambda      Rho       Theta      Vega     VegaLT
    ______    ________    _______    _______    ______    _______    ______    ______
    131.22    -0.67246    0.00155    -4.6122    -152.4    -74.841    105.65      0   
Input Arguments
Pricer object, specified as a previously created RoughVolMonteCarlo
            pricer object. Create the pricer object using finpricer. 
Data Types: object
Instrument object, specified as a scalar or a vector of previously created
            instrument objects. Create the instrument objects using fininstrument. The following
            instrument objects are supported: 
Data Types: object
(Optional) List of sensitivities to compute, specified as an
              NOUT-by-1 or
              1-by-NOUT cell array of character vectors or
            string array. 
The supported sensitivities depend on the pricing method.
| inpInstrumentObject | Supported Sensitivities | 
|---|---|
| Vanilla | {'delta','gamma','vega',
                        'theta','rho','price','lambda'} | 
| Asian | {'delta','gamma','vega','theta','rho','price','lambda'} | 
| Cliquet | {'delta','gamma','vega','theta','rho','price','lambda}' | 
| Binary | {'delta','gamma','vega','theta','rho','price','lambda'} | 
inpSensitivity = {'All'} or inpSensitivity =
              ["All"] specifies that all sensitivities for the pricing method are
            returned. This is the same as specifying inpSensitivity to include
            each sensitivity.
Example: inpSensitivity =
              ["delta","gamma","vega","lambda","rho","theta","price"]
Data Types: cell | string
Output Arguments
Instrument price, returned as a numeric.
Price result, returned as a PriceResult object. The object has
            the following fields:
- PriceResult.Results— Table of results that includes sensitivities (if you specify- inpSensitivity)
- PriceResult.PricerData— Structure for pricer data
More About
A delta sensitivity measures the rate at which the price of an option is expected to change relative to a $1 change in the price of the underlying asset.
Delta is not a static measure; it changes as the price of the underlying asset changes (a concept known as gamma sensitivity), and as time passes. Options that are near the money or have longer until expiration are more sensitive to changes in delta.
A gamma sensitivity measures the rate of change of an option's delta in response to a change in the price of the underlying asset.
In other words, while delta tells you how much the price of an option might move, gamma tells you how fast the option's delta itself will change as the price of the underlying asset moves. This is important because this helps you understand the convexity of an option's value in relation to the underlying asset's price.
A vega sensitivity measures the sensitivity of an option's price to changes in the volatility of the underlying asset.
Vega represents the amount by which the price of an option would be expected to change for a 1% change in the implied volatility of the underlying asset. Vega is expressed as the amount of money per underlying share that the option's value will gain or lose as volatility rises or falls.
A theta sensitivity measures the rate at which the price of an option decreases as time passes, all else being equal.
Theta is essentially a quantification of time decay, which is a key concept in options pricing. Theta provides an estimate of the dollar amount that an option's price would decrease each day, assuming no movement in the price of the underlying asset and no change in volatility.
A rho sensitivity measures the rate at which the price of an option is expected to change in response to a change in the risk-free interest rate.
Rho is expressed as the amount of money an option's price would gain or lose for a one percentage point (1%) change in the risk-free interest rate.
A lambda sensitivity measures the percentage change in an option's price for a 1% change in the price of the underlying asset.
Lambda is a measure of leverage, indicating how much more sensitive an option is to price movements in the underlying asset compared to owning the asset outright.
Version History
Introduced in R2024aThe price function supports pricing when using a RoughHeston model and a RoughVolMonteCarlo
        pricing method.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Seleccione un país/idioma
Seleccione un país/idioma para obtener contenido traducido, si está disponible, y ver eventos y ofertas de productos y servicios locales. Según su ubicación geográfica, recomendamos que seleccione: .
También puede seleccionar uno de estos países/idiomas:
Cómo obtener el mejor rendimiento
Seleccione China (en idioma chino o inglés) para obtener el mejor rendimiento. Los sitios web de otros países no están optimizados para ser accedidos desde su ubicación geográfica.
América
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)