optSensByLocalVolFD
Option price and sensitivities by local volatility model, using finite differences
Syntax
Description
[
                compute option price and sensitivities by the local volatility model, using the
                Crank-Nicolson method.PriceSens,PriceGrid,AssetPrices,Times]
= optSensByLocalVolFD(Rate,AssetPrice,Settle,ExerciseDates,OptSpec,Strike,ImpliedVolData)
Note
Alternatively, you can use the Vanilla
                        object to calculate price or sensitivities for vanilla options. For more
                        information, see Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments.
[
                specifies options using one or more name-value pair arguments in addition to the
                input arguments in the previous syntax. PriceSens,PriceGrid,AssetPrices,Times]
= optSensByLocalVolFD(___,Name,Value)
Examples
Define the option variables.
AssetPrice = 590; Strike = 590; Rate = 0.06; DividendYield = 0.0262; Settle = datetime(2018,1,1); ExerciseDates = datetime(2020,1,1);
Define the implied volatility surface data.
Maturity = [datetime(2018,3,6) datetime(2018,6,5) datetime(2018,9,12) datetime(2018,12,10) datetime(2019,1,1) datetime(2019,7,2) datetime(2020,1,1) datetime(2021,1,1) datetime(2022,1,1) datetime(2023,1,1)]; Maturity = repmat(Maturity,10,1); Maturity = Maturity(:); ExercisePrice = AssetPrice.*[0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.30 1.40]; ExercisePrice = repmat(ExercisePrice,1,10)'; ImpliedVol = [... 0.190; 0.168; 0.133; 0.113; 0.102; 0.097; 0.120; 0.142; 0.169; 0.200; ... 0.177; 0.155; 0.138; 0.125; 0.109; 0.103; 0.100; 0.114; 0.130; 0.150; ... 0.172; 0.157; 0.144; 0.133; 0.118; 0.104; 0.100; 0.101; 0.108; 0.124; ... 0.171; 0.159; 0.149; 0.137; 0.127; 0.113; 0.106; 0.103; 0.100; 0.110; ... 0.171; 0.159; 0.150; 0.138; 0.128; 0.115; 0.107; 0.103; 0.099; 0.108; ... 0.169; 0.160; 0.151; 0.142; 0.133; 0.124; 0.119; 0.113; 0.107; 0.102; ... 0.169; 0.161; 0.153; 0.145; 0.137; 0.130; 0.126; 0.119; 0.115; 0.111; ... 0.168; 0.161; 0.155; 0.149; 0.143; 0.137; 0.133; 0.128; 0.124; 0.123; ... 0.168; 0.162; 0.157; 0.152; 0.148; 0.143; 0.139; 0.135; 0.130; 0.128; ... 0.168; 0.164; 0.159; 0.154; 0.151; 0.147; 0.144; 0.140; 0.136; 0.132]; ImpliedVolData = table(Maturity, ExercisePrice, ImpliedVol);
Compute the European call option price and sensitivities.
OptSpec = 'Call'; [Delta,Gamma,Lambda,Theta,Price] = optSensByLocalVolFD(Rate, AssetPrice, ... Settle, ExerciseDates, OptSpec, Strike, ImpliedVolData, 'DividendYield',DividendYield, ... 'OutSpec',["Delta" "Gamma" "Lambda" "Theta" "Price"])
Delta = 0.5519
Gamma = 0.0091
Lambda = 4.9994
Theta = -20.9529
Price = 65.1319
Input Arguments
Continuously compounded risk-free interest rate, specified by a scalar numeric.
Data Types: double
Current underlying asset price, specified as a scalar numeric.
Data Types: double
Settlement date, specified as a scalar datetime, string, or date character vector.
To support existing code, optSensByLocalVolFD also
    accepts serial date numbers as inputs, but they are not recommended.
Option exercise dates, specified as a datetime array, string array, or date character vectors:
- For a European option, there is only one - ExerciseDatesvalue and this is the option expiry date.
- For an American option, use a - 1-by-- 2vector dates. The American option can be exercised on any date between or including the pair of dates. If only one non-- NaNdate is listed, the option can be exercised between- Settleand the single listed date in- ExerciseDates.
To support existing code, optSensByLocalVolFD also
    accepts serial date numbers as inputs, but they are not recommended.
Definition of the option, specified as a character vector or string array
                        with a value of 'call' or
                        'put'.
Data Types: char | string
Option strike price value, specified as a nonnegative scalar.
Data Types: double
A table of maturity dates, strike or exercise prices, and their
                        corresponding implied volatilities,specified as a
                            NVOL-by-3 table.
Data Types: table
Name-Value Arguments
Specify optional pairs of arguments as
      Name1=Value1,...,NameN=ValueN, where Name is
      the argument name and Value is the corresponding value.
      Name-value arguments must appear after other arguments, but the order of the
      pairs does not matter.
    
      Before R2021a, use commas to separate each name and value, and enclose 
      Name in quotes.
    
Example: PriceSens = Price = optByLocalVolFD(Rate,AssetPrice,Settle,
                    ExerciseDates,OptSpec,Strike,ImpliedVolData,'AssetGridSize',1000,'OutSpec',{'delta','gamma','vega','lambda','rho','theta','price'})
Day-count basis, specified as the comma-separated pair consisting of
                                'Basis' and a scalar using one of these supported
                            values: 
- 0 = actual/actual 
- 1 = 30/360 (SIA) 
- 2 = actual/360 
- 3 = actual/365 
- 4 = 30/360 (PSA) 
- 5 = 30/360 (ISDA) 
- 6 = 30/360 (European) 
- 7 = actual/365 (Japanese) 
- 8 = actual/actual (ICMA) 
- 9 = actual/360 (ICMA) 
- 10 = actual/365 (ICMA) 
- 11 = 30/360E (ICMA) 
- 12 = actual/365 (ISDA) 
- 13 = BUS/252 
For more information, see Basis.
Data Types: double
Continuously compounded underlying asset yield, specified as the
                            comma-separated pair consisting of 'DividendYield'
                            and a scalar numeric. 
Note
If you enter a value for DividendYield,
                                    then set DividendAmounts and
                                        ExDividendDates = [
                                        ] or do not enter them. If you enter values for
                                        DividendAmounts and
                                        ExDividendDates, then set
                                        DividendYield =
                                    0.
Data Types: double
Cash dividend amounts, specified as the comma-separated pair
                            consisting of 'DividendAmounts' and a
                                NDIV-by-1 vector.
For each dividend amount, there must be a corresponding
                                ExDividendDates date. If you enter values for
                                DividendAmounts and
                                ExDividendDates, then set
                                DividendYield = 0.
Note
If you enter a value for DividendYield,
                                    then set DividendAmounts and
                                        ExDividendDates = [
                                        ] or do not enter them.
Data Types: double
Ex-dividend dates, specified as the comma-separated pair consisting of
                                'ExDividendDates' and a
                                NDIV-by-1 vector using a
                            datetime array, string array, or date character vectors.
To support existing code, optSensByLocalVolFD also
    accepts serial date numbers as inputs, but they are not recommended.
Maximum price for price grid boundary, specified as the
                            comma-separated pair consisting of 'AssetPriceMax'
                            and a positive scalar. 
Data Types: double
Size of the asset grid for finite difference grid, specified as the
                            comma-separated pair consisting of 'AssetGridSize'
                            and a positive scalar.
Data Types: double
Size of the time grid for finite difference grid, specified as the
                            comma-separated pair consisting of 'TimeGridSize' and
                            a positive scalar.
Data Types: double
Option type, specified as the comma-separated pair consisting of
                                'AmericanOpt' and a positive integer scalar flag
                            with one of these values: 
- 0— European
- 1— American
Data Types: double
Method of interpolation for estimating the implied volatility surface
                            from ImpliedVolData, specified as the
                            comma-separated pair consisting of 'InterpMethod' and
                            a character vector or string with one of the following values: 
- 'linear'— Linear interpolation
- 'makima'— Modified Akima cubic Hermite interpolation
- 'spline'— Cubic spline interpolation
- 'tpaps'— Thin-plate smoothing spline interpolation
Note
The 'tpaps' method uses the thin-plate
                                    smoothing spline functionality from Curve Fitting Toolbox™. 
The 'makima' and
                                        'spline' methods work only for gridded
                                    data. For scattered data, use the 'linear' or
                                        'tpaps' methods.
For more information on gridded or scattered data and details on interpolation methods, see Gridded and Scattered Sample Data and Interpolating Gridded Data.
Data Types: char | string
Define outputs, specified as the comma-separated pair consisting of
                                'OutSpec' and an NOUT-
                                by-1 or a
                                1-by-NOUT cell array of
                            character vectors with possible values of 'price',
                                'delta', 'gamma',
                                'vega', 'lambda',
                                'rho', and 'theta'.
Example: OutSpec =
                                {'delta','gamma','vega','lambda','rho','theta','price'}
Data Types: cell | string
Output Arguments
Option price and sensitivities, returned as a scalar numeric.
                            OutSpec determines the types and order of the
                        output.
Grid containing prices calculated by the finite difference method,
                        returned as a grid that is two-dimensional with size
                            AssetGridSize ⨉ TimeGridSize.
                        The number of columns does not have to be equal to the
                            TimeGridSize, because
                            ExerciseDates and
                            ExDividendDates are added to the time grid.
                            PriceGrid(:, :, end) contains the price for
                            t = 0. 
Prices of the asset corresponding to the first dimension of
                            PriceGrid, returned as a vector.
Times corresponding to second dimension of the
                            PriceGrid, returned as a vector.
More About
A vanilla option is a category of options that includes only the most standard components.
A vanilla option has an expiration date and straightforward strike price. American-style options and European-style options are both categorized as vanilla options.
The payoff for a vanilla option is as follows:
- For a call: 
- For a put: 
where:
St is the price of the underlying asset at time t.
K is the strike price.
For more information, see Vanilla Option.
A local volatility model treats volatility as a function both of the current asset level and of time.
The local volatility can be estimated by using the Dupire formula [2]:
References
[1] Andersen, L. B., and R. Brotherton-Ratcliffe. "The Equity Option Volatility Smile: An Implicit Finite-Difference Approach." Journal of Computational Finance. Vol. 1, Number 2, 1997, pp. 5–37.
[2] Dupire, B. "Pricing with a Smile." Risk. Vol. 7, Number 1, 1994, pp. 18–20.
Version History
Introduced in R2018bAlthough optSensByLocalVolFD supports serial date numbers,
                        datetime values are recommended instead. The
                        datetime data type provides flexible date and time
                formats, storage out to nanosecond precision, and properties to account for time
                zones and daylight saving time.
To convert serial date numbers or text to datetime values, use the datetime function. For example:
t = datetime(738427.656845093,"ConvertFrom","datenum"); y = year(t)
y =
        2021
There are no plans to remove support for serial date number inputs.
See Also
optstockbyfd | optstocksensbyfd | optByLocalVolFD | optByHestonFD | optSensByHestonFD | optByBatesFD | optSensByBatesFD | optByMertonFD | optSensByMertonFD | Vanilla
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Seleccione un país/idioma
Seleccione un país/idioma para obtener contenido traducido, si está disponible, y ver eventos y ofertas de productos y servicios locales. Según su ubicación geográfica, recomendamos que seleccione: .
También puede seleccionar uno de estos países/idiomas:
Cómo obtener el mejor rendimiento
Seleccione China (en idioma chino o inglés) para obtener el mejor rendimiento. Los sitios web de otros países no están optimizados para ser accedidos desde su ubicación geográfica.
América
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)