Data Clustering
Find clusters in input/output data using fuzzy c-means
The purpose of clustering is to identify natural groupings from a large data set to produce a concise representation of the data. You can use Fuzzy Logic Toolbox™ software to identify clusters within input/output training data using the fuzzy c-means algorithm. Also, you can use the resulting cluster information to generate a fuzzy inference system to model the data behavior. For more information, see Fuzzy Clustering.
Live Editor Tasks
FCM Data Clustering | Cluster data using fuzzy c-means algorithm in the Live Editor (Since R2025a) |
Functions
fcm | Fuzzy c-means clustering |
fcmOptions | FCM clustering options (Since R2023a) |
subclust | Find cluster centers using subtractive clustering |
plotFuzzyClusters | Plot data clusters for fuzzy-c-means clustering (Since R2025a) |
Topics
- Fuzzy Clustering
Identify natural groupings of data using fuzzy c-means or subtractive clustering.
- Fuzzy C-Means Clustering
Cluster example numerical data using FCM clustering.
- Cluster Quasi-Random Data Using Fuzzy C-Means Clustering
Cluster data and determine cluster centers using FCM.
- Adjust Fuzzy Overlap in Fuzzy C-Means Clustering
Specify the crispness of the boundary between fuzzy clusters.