Main Content

Data Clustering

Find clusters in input/output data using fuzzy c-means

The purpose of clustering is to identify natural groupings from a large data set to produce a concise representation of the data. You can use Fuzzy Logic Toolbox™ software to identify clusters within input/output training data using the fuzzy c-means algorithm. Also, you can use the resulting cluster information to generate a fuzzy inference system to model the data behavior. For more information, see Fuzzy Clustering.

Live Editor Tasks

FCM Data ClusteringCluster data using fuzzy c-means algorithm in the Live Editor (Since R2025a)

Functions

fcmFuzzy c-means clustering
fcmOptionsFCM clustering options (Since R2023a)
subclustFind cluster centers using subtractive clustering
plotFuzzyClustersPlot data clusters for fuzzy-c-means clustering (Since R2025a)

Topics

Featured Examples