# Orifice (G)

Flow restriction in a gas network

**Library:**Simscape / Fluids / Gas / Valves & Orifices

## Description

The Orifice (G) block represents the pressure loss incurred in a gas network due to a purely resistive element of fixed or variable size, such as a flow restriction, orifice, or valve. You can use orifices to measure and report gas flow characteristics.

### Orifice Parameterizations

The block behavior depends on the **Orifice parametrization**
parameter:

`Cv flow coefficient`

— The flow coefficient*C*_{v}determines the block parameterization. The flow coefficient measures the ease with which a gas can flow when driven by a certain pressure differential.`Kv flow coefficient`

— The flow coefficient*K*_{v}, where $${K}_{v}=0.865{C}_{v}$$, determines the block parameterization. The flow coefficient measures the ease with which a gas can flow when driven by a certain pressure differential.`Sonic conductance`

— The sonic conductance of the resistive element at steady state determines the block parameterization. The sonic conductance measures the ease with which a gas can flow when*choked*, which is a condition in which the flow velocity is at the local speed of sound. Choking occurs when the ratio between downstream and upstream pressures reaches a critical value known as the*critical pressure ratio*.`Orifice area`

— The size of the flow restriction determines the block parametrization.

### Opening Characteristics

When you set **Orifice type** to
`Variable`

, the block uses the input at port **L** to control certain parameters. This input is the
control signal and it is associated with stroke or lift percent. The control signal
ranges in value from `0`

to `1`

. If you specify a
lesser or greater value, the block saturates the value to the nearest of the two
limits.

The conversion from a control signal to the chosen measure of flow capacity
depends on the **Opening characteristic** parameterization. Flow
is maximally restricted when the control signal is `0`

and
minimally restricted when the control signal is `1`

. In between
these values, the flow rate achieved within the resistive element depends on whether
the opening parameterization is linear or based on tabulated data:

`Linear`

— The measure of flow capacity is proportional to the control signal at port**L**. The two values vary in tandem until the control signal either drops below`0`

or rises above`1`

. As the control signal rises from`0`

to`1`

, the measure of flow capacity scales from the specified minimum to the specified maximum.When you set

**Orifice parameterization**to`Sonic conductance`

, the block treats the critical pressure ratio and subsonic index as constants that are independent of control signal. When you set**Orifice parameterization**to`Cv flow coefficient`

or`Kv flow coefficient`

, the block treats the parameter**xT pressure differential ratio factor at choked flow**as a constant independent of the control signal.`Tabulated`

— The block calculates the measure of flow capacity as a function of the control signal at port**L**. This function is based on a one-way lookup table. The tabulated data must be specified so the measure of flow capacity increases monotonically with the control signal.When you set

**Orifice parameterization**to`Sonic conductance`

, the block treats the critical pressure ratio as a function of the control signal and treats the subsonic index as a constant.. When you set**Orifice parameterization**to`Cv flow coefficient`

or`Kv flow coefficient`

, the block treats the parameter**xT pressure differential ratio factor at choked flow**as a function of the control signal.

### Numerical Smoothing

When the **Orifice type** parameter is
`Variable`

, the **Opening
characteristic** parameter is `Linear`

, and
the **Smoothing factor** parameter is nonzero, the block applies
numerical smoothing to the control signal from port **L**. Enabling
smoothing helps maintain numerical robustness in your simulation.

For more information, see Numerical Smoothing.

### Momentum Balance

The block equations depend on the **Orifice parametrization**
parameter. When you set **Orifice parametrization** to
`Cv flow coefficient parameterization`

, the mass
flow rate, $$\dot{m}$$, is

$$\dot{m}={C}_{v}{N}_{6}Y\sqrt{({p}_{in}-{p}_{out}){\rho}_{in}},$$

where:

*C*is the flow coefficient._{v}*N*is a constant equal to 27.3 for mass flow rate in kg/hr, pressure in bar, and density in kg/m_{6}^{3}.*Y*is the expansion factor.*p*is the inlet pressure._{in}*p*is the outlet pressure._{out}*ρ*is the inlet density._{in}

The expansion factor is

$$Y=1-\frac{{p}_{in}-{p}_{out}}{3{p}_{in}{F}_{\gamma}{x}_{T}},$$

where:

*F*is the ratio of the isentropic exponent to 1.4._{γ}*x*is the value of the_{T}**xT pressure differential ratio factor at choked flow**parameter.

The block smoothly transitions to a linearized form of the equation when the
pressure ratio, $${p}_{out}/{p}_{in}$$, rises above the value of the **Laminar flow pressure
ratio** parameter,
*B _{lam}*,

$$\dot{m}={C}_{v}{N}_{6}{Y}_{lam}\sqrt{\frac{{\rho}_{avg}}{{p}_{avg}(1-{B}_{lam})}}({p}_{in}-{p}_{out}),$$

where:

$${Y}_{lam}=1-\frac{1-{B}_{lam}}{3{F}_{\gamma}{x}_{T}}.$$

When the pressure ratio, $${p}_{out}/{p}_{in}$$, falls below $$1-{F}_{\gamma}{x}_{T}$$, the orifice becomes choked and the block switches to the equation

$$\dot{m}=\frac{2}{3}{C}_{v}{N}_{6}\sqrt{{F}_{\gamma}{x}_{T}{p}_{in}{\rho}_{in}}.$$

When you set **Orifice parametrization** to ```
Kv
flow coefficient parameterization
```

, the block uses these same
equations, but replaces *C _{v}* with

*K*by using the relation $${K}_{v}=0.865{C}_{v}$$. For more information on the mass flow equations when the

_{v}**Orifice parametrization**parameter is

```
Kv
flow coefficient parameterization
```

or ```
Cv flow
coefficient parameterization
```

, see [2][3].When you set **Orifice parametrization** to
`Sonic conductance parameterization`

, the mass flow
rate, $$\dot{m}$$, is

$$\dot{m}=C{\rho}_{ref}{p}_{in}\sqrt{\frac{{T}_{ref}}{{T}_{in}}}{\left[1-{\left(\frac{\frac{{p}_{out}}{{p}_{in}}-{B}_{crit}}{1-{B}_{crit}}\right)}^{2}\right]}^{m},$$

where:

*C*is the sonic conductance.*B*is the critical pressure ratio._{crit}*m*is the value of the**Subsonic index**parameter.*T*is the value of the_{ref}**ISO reference temperature**parameter.*ρ*is the value of the_{ref}**ISO reference density**parameter.*T*is the inlet temperature._{in}

The block smoothly transitions to a linearized form of the equation when the
pressure ratio, $${p}_{out}/{p}_{in}$$, rises above the value of the **Laminar flow pressure
ratio** parameter
*B _{lam}*,

$$\dot{m}=C{\rho}_{ref}\sqrt{\frac{{T}_{ref}}{{T}_{avg}}}{\left[1-{\left(\frac{{B}_{lam}-{B}_{crit}}{1-{B}_{crit}}\right)}^{2}\right]}^{m}\left(\frac{{p}_{in}-{p}_{out}}{1-{B}_{lam}}\right).$$

When the pressure ratio, $${p}_{out}/{p}_{in}$$, falls below the critical pressure ratio,
*B _{crit}*, the orifice becomes
choked and the block switches to the equation

$$\dot{m}=C{\rho}_{ref}{p}_{in}\sqrt{\frac{{T}_{ref}}{{T}_{in}}}.$$

For more information on the mass flow equations when the **Orifice
parametrization** parameter is ```
Sonic conductance
parameterization
```

, see [1].

When you set **Orifice parametrization** to
`Orifice area parameterization`

, the mass flow
rate, $$\dot{m}$$, is

$$\dot{m}={C}_{d}{S}_{r}\sqrt{\frac{2\gamma}{\gamma -1}{p}_{in}{\rho}_{in}{\left(\frac{{p}_{out}}{{p}_{in}}\right)}^{\frac{2}{\gamma}}\left[\frac{1-{\left(\frac{{p}_{out}}{{p}_{in}}\right)}^{\frac{\gamma -1}{\gamma}}}{1-{\left(\frac{{S}_{R}}{S}\right)}^{2}{\left(\frac{{p}_{out}}{{p}_{in}}\right)}^{\frac{2}{\gamma}}}\right]},$$

where:

*S*is the orifice or valve area._{r}*S*is the value of the**Cross-sectional area at ports A and B**parameter.*C*is the value of the_{d}**Discharge coefficient**parameter.*γ*is the isentropic exponent.

The block smoothly transitions to a linearized form of the equation when the
pressure ratio, $${p}_{out}/{p}_{in}$$, rises above the value of the **Laminar flow pressure
ratio** parameter,
*B _{lam}*,

$$\dot{m}={C}_{d}{S}_{r}\sqrt{\frac{2\gamma}{\gamma -1}{p}_{avg}^{\frac{2-\gamma}{\gamma}}{\rho}_{avg}{B}_{lam}^{\frac{2}{\gamma}}\left[\frac{1-\text{\hspace{0.17em}}{B}_{lam}^{\frac{\gamma -1}{\gamma}}}{1-{\left(\frac{{S}_{R}}{S}\right)}^{2}{B}_{lam}^{\frac{2}{\gamma}}}\right]}\left(\frac{{p}_{in}^{\frac{\gamma -1}{\gamma}}-{p}_{out}^{\frac{\gamma -1}{\gamma}}}{1-{B}_{lam}^{\frac{\gamma -1}{\gamma}}}\right).$$

When the pressure ratio, $${p}_{out}/{p}_{in}$$, falls below$${\left(\frac{2}{\gamma +1}\right)}^{\frac{\gamma}{\gamma -1}}$$ , the orifice becomes choked and the block switches to the equation

$$\dot{m}={C}_{d}{S}_{R}\sqrt{\frac{2\gamma}{\gamma +1}{p}_{in}{\rho}_{in}\frac{1}{{\left(\frac{\gamma +1}{2}\right)}^{\frac{2}{\gamma -1}}-{\left(\frac{{S}_{R}}{S}\right)}^{2}}}.$$

For more information on the mass flow equations when the **Orifice
parametrization** parameter is ```
Orifice area
parameterization
```

, see [4].

### Mass Balance

The block assumes the volume and mass of fluid inside the resistive element is very small and ignores these values. As a result, no amount of fluid can accumulate in the resistive element. By the principle of conservation of mass, the mass flow rate into the valve through one port equals that out of the valve through the other port

$${\dot{m}}_{A}+{\dot{m}}_{B}=0,$$

where $$\dot{m}$$ is defined as the mass flow rate into the valve through the port
indicated by the **A** or **B** subscript.

### Energy Balance

The resistive element of the block is an adiabatic component. No heat exchange can
occur between the fluid and the wall that surrounds it. No work is done on or by the
fluid as it traverses from inlet to outlet. Energy can flow only by advection,
through ports **A** and **B**. By the principle of conservation of energy, the sum of the port
energy flows is always equal to zero

$${\varphi}_{\text{A}}+{\varphi}_{\text{B}}=0,$$

where *ϕ* is the energy flow rate into the valve through ports
**A** or **B**.

### Assumptions and Limitations

The

`Sonic conductance`

setting of the**Orifice parameterization**parameter is for pneumatic applications. If you use this setting for gases other than air, you may need to scale the sonic conductance by the square root of the specific gravity.The equation for the

`Orifice area`

parameterization is less accurate for gases that are far from ideal.This block does not model supersonic flow.

## Ports

### Input

### Conserving

## Parameters

## Model Examples

## References

[1] ISO 6358-3. "Pneumatic fluid power – Determination of flow-rate characteristics of components using compressible fluids – Part 3: Method for calculating steady-state flow rate characteristics of systems". 2014.

[2] IEC 60534-2-3. "Industrial-process control valves – Part 2-3: Flow capacity – Test procedures". 2015.

[3] ANSI/ISA-75.01.01. "Industrial-Process Control Valves – Part 2-1: Flow capacity – Sizing equations for fluid flow underinstalled conditions". 2012.

[4] P. Beater. *Pneumatic
Drives*. Springer-Verlag Berlin Heidelberg. 2007.

## Extended Capabilities

## Version History

**Introduced in R2018a**