Model Type and Other Transformations
Functions
idfrd | Frequency response data or model |
idpoly | Polynomial model with identifiable parameters |
idtf | Transfer function model with identifiable parameters |
idss | State-space model with identifiable parameters |
compreal | Compute companion state-space realization (Since R2023b) |
modalreal | Compute modal state-space realization (Since R2023b) |
noisecnv | Transform identified linear model with noise channels to model with measured channels only |
translatecov | Translate parameter covariance across model transformation operations |
merge | Merge estimated models |
append | Group models by appending their inputs and outputs |
noise2meas | Noise component of linear identified model |
absorbDelay | Replace time delays by poles at z = 0 or phase shift |
chgTimeUnit | Change time units of dynamic system |
chgFreqUnit | Change frequency units of frequency-response data model |
fdel | Delete specified data from frequency response data (FRD) models |
stack | Build model array by stacking models or model arrays along array dimensions |
ss2ss | State coordinate transformation for state-space model |
Examples and How To
- Transforming Between Linear Model Representations
Converting between state-space, polynomial, and frequency-response representations.
- Reducing Model Order Using Pole-Zero Plots
You can use pole-zero plots of linear identified models to evaluate whether it might be useful to reduce model order.
- Create and Plot Identified Models Using Control System Toolbox Software
Identify models and use the Linear System Analyzer to plot the models.
Concepts
- Using Identified Models for Control Design Applications
Using System Identification Toolbox™ models with Control System Toolbox™ software.
- Subreferencing Models
Creating models with subsets of inputs and outputs from multivariable models at the command line.
- State-Space Realizations
A state-space model can be expressed in an infinite number of realizations. Common forms, sometimes called canonical forms, include modal, companion, observable, and controllable forms.
- Concatenating Models
Horizontal and vertical concatenation of model objects at the command line.
- Merging Models
How to merge models to obtain a single model with parameters that are statistically weighed means of the parameters of the individual models.
- Treating Noise Channels as Measured Inputs
Convert noise channels to measured channels and include the variance of the innovations.