# polynomialRegressor

Specify polynomial regressor for nonlinear ARX model

## Description

Polynomial regressors are polynomials that are composed of delayed input and output variables. For example, y(t–1)2 and y(t–1) u(t–1) are both polynomial regressors with orders of 2 and variable delays of one sample. A `polynomialRegressor` object encapsulates a set of polynomial regressors. Use `polynomialRegressor` objects when you create nonlinear ARX models using `idnlarx` or `nlarx`. You can specify `polynomialRegressor` objects along with `linearRegressor` and `customRegressor` objects and combine them into a single combined regressor set.

## Creation

### Syntax

``pReg = polynomialRegressor(Variables,Lags)``
``pReg = polynomialRegressor(Variables,Lags,Order)``
``pReg = polynomialRegressor(Variables,Lags,Order,UseAbsolute)``
``pReg = polynomialRegressor(Variables,Lags,Order,UseAbsolute,AllowVariableMix)``
``pReg = polynomialRegressor(Variables,Lags,Order,UseAbsolute,AllowVariableMix,AllowLagMix)``

### Description

example

````pReg = polynomialRegressor(Variables,Lags)` creates a `polynomialRegressor` object of order 2 that contains output and input names in Variables and the corresponding lags in Lags. For example, if `Variables` contains `'y'` and `lags` contains the corresponding lag vector ```[2 4]```, then the regressors that use `'y'` are y(t–2)2 and y(t–4)2.```

example

````pReg = polynomialRegressor(Variables,Lags,Order)` creates a `polynomialRegressor` object of order `Order` .```

example

````pReg = polynomialRegressor(Variables,Lags,Order,UseAbsolute)` specifies in `UseAbsolute` whether to use the absolute values of the variables to create the regressors.```

example

````pReg = polynomialRegressor(Variables,Lags,Order,UseAbsolute,AllowVariableMix)` specifies in `AllowVariableMix` whether to allow multiple variables in the regressor formulas. For example, if `Variables` is equal to `{'y','u'}`, `Lags` is equal to `{1,1}`, and `Order` is equal to `2`, then a value of `true` for `AllowVariableMix` results in the inclusion of the mixed-variable regressor y(t–1)u(t–1), along with the single-variable regressors y(t–1)2 and u(t–1)2.```

example

````pReg = polynomialRegressor(Variables,Lags,Order,UseAbsolute,AllowVariableMix,AllowLagMix)` specifies in `AllowLagMix` whether to allow different lags in the regressor formulas. For example, if `Variables` is equal to `{'y','u'}`, `Lags` is equal to ```{2,[0 3]}```, `Order` is equal to `2`, and `AllowVariableMix` is equal to `false`, then a value of `true` for `AllowLagMix` results in the inclusion of the mixed-lag regressor u(t)u(t–3), along with the unique-lag regressors y(t–2)2, u(t)2, and u(t–3)2. Note that if you set `AllowVariableMix` to `true`, then the regressor set will also include y(t–2)u(t) and y(t–2)u(t–3).```

## Properties

expand all

Output and input variable names, specified as a cell array of strings or a cell array that references the `OutputName` and `InputName` properties of an `iddata` object. Each entry must be a string with no special characters other than white space. For an example of using this property, see Estimate Nonlinear ARX Model with Polynomial Regressors.

Example: `{'y1','u1'}`

Example: `[z.OutputName; z.InputName]'`

Lags in each variable, specified as a 1-by-nv cell array of non-negative integer row vectors, where nv is the total number of regressor variables. Each row vector contains nr integers that specify the nr regressor lags for the corresponding variable. For instance, suppose that you want the following regressors:

• Output variable y1: y1(t–1)2 and y1(t–2)2

• Input variable u1: u1(t–3)2

To obtain these lags, set `Lags` to ```{[1 2],3}```.

If a lag corresponds to an output variable of an `idnlarx` model, the minimum lag must be greater than or equal to 1.

For an example of using this property, see Estimate Nonlinear ARX Model with Polynomial Regressors.

Example: `{1 1}`

Example: `{[1 2],[1,3,4]}`

Absolute value indicator that determines whether to use the absolute value of a regressor variable instead of the signed value, specified as a logical vector with a length equal to the number of variables.

For an example of setting this property, see Use Absolute Value in Polynomial Regressor Set.

Example: `[true,false]`

Mixed variables indicator that determines whether to use multiple variables in regressor formulas such as y(t–1)u(t–1), specified as a logical vector with a length equal to the number of variables.

For an example of setting this property, see Use Multiple Variables in Polynomial Regressor Term.

Example: `[true,false]`

Mixed lag indicator that determines whether to use different lags in regressor formulas such as u(t)u(t–3), specified as a logical vector with a length equal to the number of variables.

To set this property for an existing nonlinear ARX model `sys`, use dot notation, as shown in the following command.

For an example of setting this property, see Use Mixed Lags in Polynomial Regressor Term.

Example: `[true,false]`

Name of the time variable, specified as a valid MATLAB® variable name that is distinct from values in `Variables`.

Example: `'ClockTime'`

## Examples

collapse all

Load the data and create an `iddata` object `z` with a sample time of 0.1 seconds.

```load twotankdata y u z = iddata(y,u,'Ts',0.1);```

Specify polynomial regressors that have the forms ${\mathit{u}\left(\mathit{t}-2\right)}^{2}$, ${\mathit{u}\left(\mathit{t}-4\right)}^{2}$, and ${\mathit{y}\left(\mathit{t}-1\right)}^{2}$.

Use the properties of `z` to specify the variable names.

`Variables = [z.OutputName;z.InputName];`

Specify the lags.

`Lags = {1,[2 4]};`

Create the regressor. The default order is `2`.

`pReg = polynomialRegressor(Variables,Lags)`
```pReg = Order 2 regressors in variables y1, u1 Order: 2 Variables: {'y1' 'u1'} Lags: { [2 4]} UseAbsolute: [0 0] AllowVariableMix: 0 AllowLagMix: 0 TimeVariable: 't' Regressors described by this set ```

Use `pReg` to estimate the nonlinear ARX model.

`sys = nlarx(z,pReg)`
```sys = Nonlinear ARX model with 1 output and 1 input Inputs: u1 Outputs: y1 Regressors: Order 2 regressors in variables y1, u1 List of all regressors Output function: Wavelet Network with 66 units Sample time: 0.1 seconds Status: Estimated using NLARX on time domain data "z". Fit to estimation data: 95.97% (prediction focus) FPE: 5.843e-05, MSE: 5.569e-05 ```

View the regressors.

`getreg(sys)`
```ans = 3×1 cell {'y1(t-1)^2'} {'u1(t-2)^2'} {'u1(t-4)^2'} ```

Specify the third-order polynomial regressor ${{\mathit{u}}_{1}\left(\mathit{t}-2\right)}^{3}$.

```Variables = 'u1'; Lags = 2; Order = 3; pReg = polynomialRegressor(Variables,Lags,Order)```
```pReg = Order 3 regressors in variables u1 Order: 3 Variables: {'u1'} Lags: {} UseAbsolute: 0 AllowVariableMix: 0 AllowLagMix: 0 TimeVariable: 't' Regressors described by this set ```

Create a second-order polynomial regressor set that uses lags of 3, 10, and 100 in variable `y1` and lags of 0 and 4 in variable `u1`.

```vars = {'y1','u1'}; lags = {[3 10 100],[0,4]};```

Specify that the `y1` regressor use the absolute value of `y1`.

`UseAbs = [true,false];`

Create the polynomial regressor.

`reg = polynomialRegressor(vars,lags,2,UseAbs)`
```reg = Order 2 regressors in variables y1, u1 Order: 2 Variables: {'y1' 'u1'} Lags: {[3 10 100] [0 4]} UseAbsolute: [1 0] AllowVariableMix: 0 AllowLagMix: 0 TimeVariable: 't' Regressors described by this set ```

Create a polynomial regressor set that includes the terms ${{\mathit{y}}_{1}\left(\mathit{t}-1\right)}^{2}$, ${{\mathit{u}}_{1}\left(\mathit{t}-1\right)}^{2}$, and ${\mathit{y}}_{1}\left(\mathit{t}-1\right){\mathit{u}}_{1}\left(\mathit{t}-1\right)$.

Specify the variables and lags.

```vars = {'y1','u1'}; lags = {1, 1};```

Specify that mixed-variable regressors be created.

`mixvar = true;`

Create a second-order polynomial regressor using `mixvar`. Set the fourth position, which represents the `UseAbsolute` property, to `false`.

`reg = polynomialRegressor(vars,lags,2,false,mixvar)`
```reg = Order 2 regressors in variables y1, u1 Order: 2 Variables: {'y1' 'u1'} Lags: { } UseAbsolute: [0 0] AllowVariableMix: 1 AllowLagMix: 0 TimeVariable: 't' Regressors described by this set ```

As an alternative, you can create the regressor specification first using the variables and lags and set the `AllowVariableMix` property afterward using dot notation.

```reg1 = polynomialRegressor(vars,lags); reg1.AllowVariablemix = true```
```reg1 = Order 2 regressors in variables y1, u1 Order: 2 Variables: {'y1' 'u1'} Lags: { } UseAbsolute: [0 0] AllowVariableMix: 1 AllowLagMix: 0 TimeVariable: 't' Regressors described by this set ```

Use `reg1` in a nonlinear ARX model.

```load twotankdata y u; z = iddata(y,u,'Ts',0.1); sys = nlarx(z,reg1);```

View the regressors.

`getreg(sys)`
```ans = 3×1 cell {'y1(t-1)^2' } {'u1(t-1)^2' } {'y1(t-1)*u1(t-1)'} ```

The regressors include mixed-variable terms.

Specify a polynomial regressor set that includes a term of the form $\mathit{u}\left(\mathit{t}\right)$$\mathit{u}\left(\mathit{t}-3\right)$.

Specify the variable names and the lags.

```vars = {'y1','u1'}; lags = {2,[0 3]};```

Initialize a second-order polynomial regressor.

`reg = polynomialRegressor(vars,lags);`

Specify that the regressor use mixed lags.

`reg.AllowLagMix = true;`

Use the regressor set in a nonlinear ARX model.

```load twotankdata y u; z = iddata(y,u,'Ts',0.1); sys = nlarx(z,reg);```

View the regressors.

`getreg(sys)`
```ans = 4×1 cell {'y1(t-2)^2' } {'u1(t)^2' } {'u1(t-3)^2' } {'u1(t)*u1(t-3)'} ```

The regressors include the mixed-lag term.

Load the data and create an `iddata` object `z`.

```load twotankdata y u z = iddata(y,u,'Ts',0.1);```

Specify polynomial regressors that have the forms ${\mathit{u}\left(\mathit{t}-2\right)}^{2}$ and ${\mathit{u}\left(\mathit{t}-4\right)}^{2}$. Also specify a linear regressor of the form $\mathit{y}\left(\mathit{t}-1\right)$.

Specify the input lag.

`uLags = {[2 4]};`

Specify the polynomial regressors. The default regressor order is `2`.

`pReg = polynomialRegressor(z.InputName,uLags);`

Specify the output lag and specify the linear regressor.

```lLags = 1; lReg = linearRegressor(z.OutputName,lLags);```

Estimate a nonlinear ARX model.

`reg = [pReg;lReg]`
```reg=2×1 object [2 1] array of polynomialRegressor, linearRegressor objects. ------------------------------------ 1. Order 2 regressors in variables u1 Order: 2 Variables: {'u1'} Lags: {[2 4]} UseAbsolute: 0 AllowVariableMix: 0 AllowLagMix: 0 TimeVariable: 't' ------------------------------------ 2. Linear regressors in variables y1 Variables: {'y1'} Lags: {} UseAbsolute: 0 TimeVariable: 't' Regressors described by this set ```
`sys = nlarx(z,reg)`
```sys = Nonlinear ARX model with 1 output and 1 input Inputs: u1 Outputs: y1 Regressors: 1. Linear regressors in variables y1 2. Order 2 regressors in variables u1 List of all regressors Output function: Wavelet Network with 21 units Sample time: 0.1 seconds Status: Estimated using NLARX on time domain data "z". Fit to estimation data: 96.56% (prediction focus) FPE: 4.133e-05, MSE: 4.059e-05 ```

View the regressors.

`getreg(sys)`
```ans = 3×1 cell {'u1(t-2)^2'} {'u1(t-4)^2'} {'y1(t-1)' } ```

Load the estimation data `z1`, which has one input and one output, and obtain the output and input names.

```load iddata1 z1; names = [z1.OutputName z1.InputName]```
```names = 1×2 cell {'y1'} {'u1'} ```

Specify `L` as the set of linear regressors that represents ${\mathit{y}}_{1}\left(\mathit{t}-1\right)$, ${\mathit{u}}_{1}\left(\mathit{t}-2\right)$, and ${\mathit{u}}_{1}\left(\mathit{t}-5\right)$.

`L = linearRegressor(names,{1,[2 5]});`

Specify `P` as the polynomial regressor ${{\mathit{y}}_{1}\left(\mathit{t}-1\right)}^{2}$.

`P = polynomialRegressor(names(1),1,2);`

Specify `C` as the custom regressor ${\mathit{y}}_{1}\left(\mathit{t}-2\right)$${\mathit{u}}_{1}\left(\mathit{t}-3\right)$. Use an anonymous function handle to define this function.

`C = customRegressor(names,{2 3},@(x,y)x.*y)`
```C = Custom regressor: y1(t-2).*u1(t-3) VariablesToRegressorFcn: @(x,y)x.*y Variables: {'y1' 'u1'} Lags: { } Vectorized: 1 TimeVariable: 't' Regressors described by this set ```

Combine the regressors in the column vector `R`.

`R = [L;P;C]`
```R=3×1 object [3 1] array of linearRegressor, polynomialRegressor, customRegressor objects. ------------------------------------ 1. Linear regressors in variables y1, u1 Variables: {'y1' 'u1'} Lags: { [2 5]} UseAbsolute: [0 0] TimeVariable: 't' ------------------------------------ 2. Order 2 regressors in variables y1 Order: 2 Variables: {'y1'} Lags: {} UseAbsolute: 0 AllowVariableMix: 0 AllowLagMix: 0 TimeVariable: 't' ------------------------------------ 3. Custom regressor: y1(t-2).*u1(t-3) VariablesToRegressorFcn: @(x,y)x.*y Variables: {'y1' 'u1'} Lags: { } Vectorized: 1 TimeVariable: 't' Regressors described by this set ```

Estimate a nonlinear ARX model with `R`.

`sys = nlarx(z1,R)`
```sys = Nonlinear ARX model with 1 output and 1 input Inputs: u1 Outputs: y1 Regressors: 1. Linear regressors in variables y1, u1 2. Order 2 regressors in variables y1 3. Custom regressor: y1(t-2).*u1(t-3) List of all regressors Output function: Wavelet Network with 1 unit Sample time: 0.1 seconds Status: Estimated using NLARX on time domain data "z1". Fit to estimation data: 59.73% (prediction focus) FPE: 3.356, MSE: 3.147 ```

View the full regressor set.

`getreg(sys)`
```ans = 5×1 cell {'y1(t-1)' } {'u1(t-2)' } {'u1(t-5)' } {'y1(t-1)^2' } {'y1(t-2).*u1(t-3)'} ``` 