# s2abcd

Convert S-parameters to ABCD-parameters

## Syntax

``abcd_params = s2abcd(s_params,z0)``

## Description

example

````abcd_params = s2abcd(s_params,z0)`converts the scattering parameters to the ABCD-parameters. ```

## Examples

collapse all

Define a matrix of S-parameters.

```s_11 = 0.61*exp(j*165/180*pi); s_21 = 3.72*exp(j*59/180*pi); s_12 = 0.05*exp(j*42/180*pi); s_22 = 0.45*exp(j*(-48/180)*pi); s_params = [s_11 s_12; s_21 s_22]; z0 = 50;```

Convert S-parameters to ABCD-parameters.

`abcd_params = s2abcd(s_params,z0)`
```abcd_params = 2×2 complex 0.0633 + 0.0069i 1.4958 - 3.9839i 0.0022 - 0.0024i 0.0732 - 0.2664i ```

## Input Arguments

collapse all

2N-port S-parameters, specified as a 2N-by-2N-by-M array of complex numbers, where M represents the number of frequency points of 2N-port S-Parameters.

Reference impedance of 2N-port S-parameters, specified as positive real scalar in ohms.

Note

`z0` must be a positive real scalar or vector. If `z0` is a vector, then the vector must be equal to the number of network parameter data points or frequency vector.

## Output Arguments

collapse all

2N-port ABCD parameters, returned as a complex 2N-by-2N-by-M array, where M represents the number of frequency points of 2N-port ABCD-parameters. The output ABCD-parameters matrices have distinct A, B, C, and D submatrices:

`$\left[\begin{array}{cc}\left[A\right]& \left[B\right]\\ \left[C\right]& \left[D\right]\end{array}\right]$`

 Pozar, David M. Microwave Engineering. 3rd ed, J. Wiley, 2005.