Main Content

IncrementalClassificationKernel Predict

Classify observations using incremental kernel classification model

Since R2024b

  • IncrementalClassificationKernel Predict Block Icon

Libraries:
Statistics and Machine Learning Toolbox / Incremental Learning / Classification / Kernel

Description

The IncrementalClassificationKernel Predict block classifies observations using a trained kernel classification model returned as the output of an IncrementalClassificationKernel Fit block.

Import an initial kernel classification model object into the IncrementalClassificationKernel Predict block by specifying the name of a workspace variable that contains the object. The input port mdl receives a bus signal that represents an incremental learning model fit to streaming data. The input port x receives a chunk of predictor data (observations), and the output port label returns predicted class labels for the chunk. The optional output port score returns the predicted class scores or posterior probabilities and the optional output port CanPredict returns the prediction status of the trained model.

Examples

Ports

Input

expand all

Incremental learning model (incrementalClassificationKernel) fit to streaming data, specified as a bus signal (see Composite Signals (Simulink)).

Chunk of predictor data, specified as a numeric matrix.

Note

The block supports only numeric input predictor data. If your input data includes categorical data, you must prepare an encoded version of the categorical data. Use dummyvar to convert each categorical variable to a numeric matrix of dummy variables. Then, concatenate all dummy variable matrices and any other numeric predictors. For more details, see Dummy Variables.

Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | Boolean | fixed point

Output

expand all

Chunk of predicted class labels, returned as a column vector. The label label(i) represents the class yielding the highest score for the observation x(i). For more details, see the label output argument of the predict object function.

If you specify an estimation period when you create mdl, the predicted class labels are the majority class during the estimation period. This class which makes up the largest proportion of the training labels in x.

Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | Boolean | fixed point | enumerated

Predicted class scores or posterior probabilities, returned as a matrix. If the model was trained using a logistic learner, the classification scores are posterior probabilities. The classification score score(i) represents the posterior probability that the observation in x belongs to class i. For more details, see Classification Score.

To check the order of the classes, use the ClassNames property of the kernel classification model specified by Select initial machine learning model.

Note

If you specify an estimation period when you create mdl, then the predicted class scores are zero during the estimation period.

Dependencies

To enable this port, select the check box for Add output port for predicted class scores on the Main tab of the Block Parameters dialog box.

Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | Boolean | fixed point

Model status for prediction, returned as numeric or logical 0 (false) or 1 (true).

Note

If you specify an estimation period when you create mdl, then the model status is 0 (false) during the estimation period.

Dependencies

To enable this port, select the check box for Add output port for status of trained machine learning model on the Main tab of the Block Parameters dialog box.

Parameters

expand all

To edit block parameters interactively, use the Property Inspector. From the Simulink® Toolstrip, on the Simulation tab, in the Prepare gallery, select Property Inspector.

Main

Specify the name of a workspace variable that contains the configured incrementalClassificationKernel model object.

When you create the initial model object, the following restrictions apply:

  • The predictor data cannot include categorical predictors (logical, categorical, char, string, or cell). If you supply training data in a table, the predictors must be numeric (double or single). To include categorical predictors in a model, preprocess them by using dummyvar before fitting the model.

  • The ScoreTransform property of the initial model cannot be "invlogit" or an anonymous function.

  • The NumPredictors property of the initial model must be a positive integer scalar, and must be equal to the number of predictors in x.

Programmatic Use

Block Parameter: InitialLearner
Type: character vector or string
Values: incrementalClassificationKernel object name
Default: "kernelMdl"

Select the check box to include the output port score in the IncrementalClassificationKernel Predict block.

Programmatic Use

Block Parameter: ShowOutputScore
Type: character vector or string
Values: "off" | "on"
Default: "off"

Select the check box to include the output port CanPredict in the IncrementalClassificationKernel Predict block. This check box does not appear if the workspace already contains an incremental kernel classification model named kernelMdl, capable of prediction, when you create the IncrementalClassificationKernel Predict block. Alternatively, you can specify to include the output port CanPredict by selecting the IncrementalClassificationKernel Predict block in the Simulink workspace and entering set_param(gcb,ShowOutputCanPredict="on") at the MATLAB® command line.

Programmatic Use

Block Parameter: ShowOutputCanPredict
Type: character vector or string
Values: "off" | "on"
Default: "off"

Specify the discrete interval between sample time hits or specify another type of sample time, such as continuous (0) or inherited (–1). For more options, see Types of Sample Time (Simulink).

By default, the IncrementalClassificationKernel Predict block inherits sample time based on the context of the block within the model.

Programmatic Use

Block Parameter: SystemSampleTime
Type: string scalar or character vector
Values: scalar
Default: "–1"

Data Types

Fixed-Point Operational Parameters

Specify the rounding mode for fixed-point operations. For more information, see Rounding Modes (Fixed-Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block parameter, enter an expression into the mask field using a MATLAB rounding function.

Programmatic Use

Block Parameter: RndMeth
Type: character vector
Values: "Ceiling" | "Convergent" | "Floor" | "Nearest" | "Round" | "Simplest" | "Zero"
Default: "Floor"

Specify whether overflows saturate or wrap.

ActionRationaleImpact on OverflowsExample

Select this check box (on).

Your model has possible overflow, and you want explicit saturation protection in the generated code.

Overflows saturate to either the minimum or maximum value that the data type can represent.

The maximum value that the int8 (signed 8-bit integer) data type can represent is 127. Any block operation result greater than this maximum value causes overflow of the 8-bit integer. With the check box selected, the block output saturates at 127. Similarly, the block output saturates at a minimum output value of –128.

Clear this check box (off).

You want to optimize the efficiency of your generated code.

You want to avoid overspecifying how a block handles out-of-range signals. For more information, see Troubleshoot Signal Range Errors (Simulink).

Overflows wrap to the appropriate value that the data type can represent.

The maximum value that the int8 (signed 8-bit integer) data type can represent is 127. Any block operation result greater than this maximum value causes overflow of the 8-bit integer. With the check box cleared, the software interprets the value causing the overflow as int8, which can produce an unintended result. For example, a block result of 130 (binary 1000 0010) expressed as int8 is –126.

Programmatic Use

Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: "off" | "on"
Default: "off"

Select this parameter to prevent the fixed-point tools from overriding the data type you specify for the block. For more information, see Use Lock Output Data Type Setting (Fixed-Point Designer).

Programmatic Use

Block Parameter: LockScale
Type: character vector
Values: "off" | "on"
Default: "off"
Data Type

Specify the data type for the label output. The type can be inherited, specified as an enumerated data type, or expressed as a data type object such as Simulink.NumericType.

The supported data types depend on the labels used in the model specified by Select initial machine learning model.

  • If the model uses numeric or logical labels, the supported data types are Inherit: Inherit via back propagation (default), double, single, half, int8, uint8, int16, uint16, int32, uint32, int64, uint64, boolean, fixed point, and a data type object.

  • If the model uses nonnumeric labels, the supported data types are Enum: <class name> and a data type object.

When you select an inherited option, the software behaves as follows:

  • Inherit: Inherit via back propagation (default for numeric and logical labels) — Simulink automatically determines the Label data type of the block during data type propagation (see Data Type Propagation (Simulink)). In this case, the block uses the data type of a downstream block or signal object.

  • Inherit: auto (default for nonnumeric labels) — The block uses an autodefined enumerated data type variable. For example, suppose the workspace variable name specified by Select initial machine learning model is myMdl, and the class labels are class 1 and class 2. Then, the corresponding label values are myMdl_enumLabels.class_1 and myMdl_enumLabels.class_2. The block converts the class labels to valid MATLAB identifiers by using the matlab.lang.makeValidName function.

For more information about data types, see Control Data Types of Signals (Simulink).

Click the Show data type assistant button to display the Data Type Assistant, which helps you set the data type attributes. For more information, see Specify Data Types Using Data Type Assistant (Simulink).

Programmatic Use

Block Parameter: LabelDataTypeStr
Type: character vector
Values: "Inherit: Inherit via back propagation" | "double" | "single" | "half" | "int8" | "uint8" | "int16" | "uint16" | "int32" | "uint32" | "int64" | "uint64" | "boolean" | "fixdt(1,16,0)" | "fixdt(1,16,2^0,0)" | "Enum: <class name>" | "<data type expression>"
Default: "Inherit: Inherit via back propagation" (for numeric and logical labels) | "Inherit: auto" (for nonnumeric labels)

Specify the lower value of the label output range that Simulink checks.

Simulink uses the minimum value to perform:

Note

The Label data type Minimum parameter does not saturate or clip the actual label output. To do so, use the Saturation (Simulink) block instead.

Dependencies

You can specify this parameter only if the model specified by Select initial machine learning model uses numeric labels.

Programmatic Use

Block Parameter: LabelOutMin
Type: character vector
Values: "[]" | scalar
Default: "[]"

Specify the upper value of the label output range that Simulink checks.

Simulink uses the maximum value to perform:

Note

The Label data type Maximum parameter does not saturate or clip the actual label output. To do so, use the Saturation (Simulink) block instead.

Dependencies

You can specify this parameter only if the model specified by Select initial machine learning model uses numeric labels.

Programmatic Use

Block Parameter: LabelOutMax
Type: character vector
Values: "[]" | scalar
Default: "[]"

Specify the data type for the score output. The type can be inherited, specified directly, or expressed as a data type object such as Simulink.NumericType.

When you select Inherit: auto, the block uses a rule that inherits a data type.

For more information about data types, see Control Data Types of Signals (Simulink).

Click the Show data type assistant button to display the Data Type Assistant, which helps you set the data type attributes. For more information, see Specify Data Types Using Data Type Assistant (Simulink).

Programmatic Use

Block Parameter: ScoreDataTypeStr
Type: character vector
Values: "Inherit: auto" | "double" | "single" | "half" | "int8" | "uint8" | "int16" | "uint16" | "int32" | "uint32" | "int64" | "uint64" | "boolean" | "fixdt(1,16,0)" | "fixdt(1,16,2^0,0)" | "<data type expression>"
Default: "Inherit: auto"

Specify the lower value of the score output range that Simulink checks.

Simulink uses the minimum value to perform:

Note

The Score data type Minimum parameter does not saturate or clip the actual score output. To do so, use the Saturation (Simulink) block instead.

Programmatic Use

Block Parameter: ScoreOutMin
Type: character vector
Values: "[]" | scalar
Default: "[]"

Specify the upper value of the score output range that Simulink checks.

Simulink uses the maximum value to perform:

Note

The Score data type Maximum parameter does not saturate or clip the actual score output. To do so, use the Saturation (Simulink) block instead.

Programmatic Use

Block Parameter: ScoreOutMax
Type: character vector
Values: "[]" | scalar
Default: "[]"
Additional Data Types

Specify the data type of the parameters for Gaussian kernel approximation computation. The type can be specified directly or expressed as a data type object such as Simulink.NumericType.

When you select Inherit: Inherit via internal rule, the block uses an internal rule to determine the kernel data type. The internal rule chooses a data type that optimizes numerical accuracy, performance, and generated code size, while taking into account the properties of the embedded target hardware. The software cannot always optimize efficiency and numerical accuracy at the same time.

For more information about data types, see Control Data Types of Signals (Simulink).

Click the Show data type assistant button to display the Data Type Assistant, which helps you set the data type attributes. For more information, see Specify Data Types Using Data Type Assistant (Simulink).

Programmatic Use

Block Parameter: KernelDataTypeStr
Type: character vector
Values: 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'uint64' | 'int64' | 'boolean' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Specify the lower value of the kernel computation internal variable range that Simulink checks.

Simulink uses the minimum value to perform:

Note

The Kernel data type Minimum parameter does not saturate or clip the actual kernel computation value.

Programmatic Use

Block Parameter: KernelOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Specify the upper value of the kernel computation internal variable range that Simulink checks.

Simulink uses the maximum value to perform:

Note

The Kernel data type Maximum parameter does not saturate or clip the actual kernel computation value.

Programmatic Use

Block Parameter: KernelOutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Specify the data type for the inner product term of the predicted response. The type can be inherited, specified directly, or expressed as a data type object such as Simulink.NumericType.

When you select Inherit: Inherit via internal rule, the block uses an internal rule to determine the inner product data type. The internal rule chooses a data type that optimizes numerical accuracy, performance, and generated code size, while taking into account the properties of the embedded target hardware. The software cannot always optimize efficiency and numerical accuracy at the same time.

For more information about data types, see Control Data Types of Signals (Simulink).

Click the Show data type assistant button to display the Data Type Assistant, which helps you set the data type attributes. For more information, see Specify Data Types Using Data Type Assistant (Simulink).

Programmatic Use

Block Parameter: InnerProductDataTypeStr
Type: character vector
Values: "Inherit: Inherit via internal rule" | "double" | "single" | "half" | "int8" | "uint8" | "int16" | "uint16" | "int32" | "uint32" | "int64" | "uint64" | "boolean" | "fixdt(1,16,0)" | "fixdt(1,16,2^0,0)" | "<data type expression>"
Default: "Inherit: Inherit via internal rule"

Specify the lower value of the inner product term range that Simulink checks.

Simulink uses the minimum value to perform:

Note

The Inner product data type Minimum parameter does not saturate or clip the actual inner product term value.

Programmatic Use

Block Parameter: InnerProductOutMin
Type: character vector
Values: "[]" | scalar
Default: "[]"

Specify the upper value of the inner product term range that Simulink checks.

Simulink uses the maximum value to perform:

Note

The Inner product data type Maximum parameter does not saturate or clip the actual inner product term value.

Programmatic Use

Block Parameter: InnerProductOutMax
Type: character vector
Values: "[]" | scalar
Default: "[]"

Block Characteristics

Data Types

Boolean | double | enumerated | fixed point | half | integer | single

Direct Feedthrough

yes

Multidimensional Signals

no

Variable-Size Signals

no

Zero-Crossing Detection

no

More About

expand all

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Version History

Introduced in R2024b