IncrementalClassificationLinear Fit
Libraries:
      Statistics and Machine Learning Toolbox / 
      Incremental Learning / 
      Classification / 
      Linear
   
Description
The IncrementalClassificationLinear Fit block fits a configured incremental
			model for linear binary classification (incrementalClassificationLinear) to streaming data.
Import an initial linear classification model object into the block by specifying the name
			of a workspace variable that contains the object. The input port x
			receives a chunk of predictor data (observations), and the input port
				y receives a chunk of responses (labels) to which the model is
			fit. The output port mdl returns an updated
				incrementalClassificationLinear model. The optional input port
				w receives a chunk of observation weights and the optional input port reset resets
    the learned parameters.
Examples
Perform Incremental Learning Using IncrementalClassificationLinear Fit and Predict Blocks
Perform incremental learning with the IncrementalClassificationLinear Fit block and predict labels with the IncrementalClassificationLinear Predict block.
- Since R2023b
- Open Live Script
Configure Simulink Template for Rate-Based Incremental Linear Classification
Configure the Simulink Rate-Based Incremental Learning template to perform incremental linear classification.
- Since R2024a
- Open Live Script
Configure Simulink Template for Conditionally Enabled Incremental Linear Classification
Configure the Simulink Enabled Execution Incremental Learning template to perform incremental linear classification.
- Since R2024a
- Open Live Script
Ports
Input
Chunk of predictor data to which the model is fit, specified as a numeric matrix. The
            orientation of the variables and observations is specified by Predictor data observation
                dimension. The default orientation  is rows, which
            indicates that the observations in the predictor data are oriented along the rows of
                x.
The length of the observation responses y and the number of
            observations in x must be equal;
                    y( is the
            response of observation j (row or column) in
            x.j)
The following restrictions apply:
- The number of predictor variables in x must be equal to the - NumPredictorsproperty value of the initial model. If the number of predictor variables in the streaming data changes from- NumPredictors, the block issues an error.
- The IncrementalClassificationLinear Fit block supports only numeric input predictor data. If your input data includes categorical data, you must prepare an encoded version of the categorical data. Use - dummyvarto convert each categorical variable to a numeric matrix of dummy variables. Then, concatenate all dummy variable matrices and any other numeric predictors. For more details, see Dummy Variables.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | Boolean | fixed point
Chunk of class labels to which the model is trained, specified as a numeric, logical, or enumerated vector. The following restrictions apply:
- The IncrementalClassificationLinear Fit block supports only binary classification. 
- The length of the observation responses y and the number of observations in x must be equal; y ( - j) is the response of observation j (row or column) in x.
- Each label must correspond to one row of the observation matrix. 
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | Boolean | fixed point | enumerated
Chunk of observation weights, specified as a vector of positive values. The IncrementalClassificationLinear Fit block weights the observations in x with the corresponding values in w. The size of w must be equal to the number of observations in x.
Dependencies
To enable this port, select the check box for Add input port for observation weights on the Main tab of the Block Parameters dialog box.
Data Types: single | double
Since R2025a
Reset signal, specified as 0 (false) or
                1 (true) or a numeric scalar. When the
                reset signal is a positive scalar (greater than 0), the block
            resets the learned parameters, if any, of the incremental learning model. If any
            hyperparameters of mdl are estimated during incremental training,
            those get reset as well. mdl.NumPredictors are always
            preserved.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | Boolean | fixed point
Output
Updated parameters of the incremental learning model fit to streaming data (including
								Beta and Bias), returned as a bus signal (see Composite
							Signals (Simulink)).
Parameters
Main
Specify the name of a workspace variable that contains the configured
								incrementalClassificationLinear model object.
The following restrictions apply:
- The predictor data cannot include categorical predictors ( - logical,- categorical,- char,- string, or- cell). If you supply training data in a table, the predictors must be numeric (- doubleor- single). To include categorical predictors in a model, preprocess them by using- dummyvarbefore fitting the model.
- The - ScoreTransformproperty of the initial model cannot be- "invlogit"or an anonymous function.
- The - NumPredictorsproperty of the initial model must be a positive integer scalar, and must be equal to the number of predictors in x.
- Before R2024a: the - Solverproperty of the initial model must be- "scale-invariant".
Programmatic Use
| Block Parameter: InitialLearner | 
| Type: workspace variable | 
| Values: incrementalClassificationLinearmodel
									object | 
| Default: "linearMdl" | 
Select the check box to include the input port w for observation weights in the IncrementalClassificationLinear Fit block.
Programmatic Use
| Block Parameter: ShowInputWeights | 
| Type: character vector | 
| Values: "off" | "on" | 
| Default: "off" | 
Since R2025a
Select the check box to include the input port reset for the reset signal in the IncrementalClassificationLinear Fit block.
Programmatic Use
| Block Parameter: ShowInputReset | 
| Type: character vector or string | 
| Values: "off" | "on" | 
| Default: "off" | 
Specify the observation dimension of the predictor data. The default value is
                rows, which indicates that observations in the predictor data are
            oriented along the rows of x.
Programmatic Use
| Block Parameter: ObservationsIn | 
| Type: character vector | 
| Values: "rows" | "columns" | 
| Default: "rows" | 
Specify the discrete interval between sample time hits or specify another type of sample
      time, such as continuous (0) or inherited (–1). For more
      options, see Types of Sample Time (Simulink).
By default, the IncrementalClassificationLinear Fit block inherits sample time based on the context of the block within the model.
Programmatic Use
| Block Parameter: SystemSampleTime | 
| Type: string scalar or character vector | 
| Values: scalar | 
| Default: "–1" | 
Data Types
Fixed-Point Operational Parameters
Specify the rounding mode for fixed-point operations. For more information, see Rounding Modes (Fixed-Point Designer).
Block parameters always round to the nearest representable value. To control the rounding of a block parameter, enter an expression into the mask field using a MATLAB® rounding function.
Programmatic Use
| Block Parameter: RndMeth | 
| Type: character vector | 
| Values: "Ceiling" | "Convergent" | "Floor" | "Nearest" | "Round" | "Simplest" |
                        "Zero" | 
| Default: "Floor" | 
Specify whether overflows saturate or wrap.
| Action | Rationale | Impact on Overflows | Example | 
|---|---|---|---|
| Select this check box
                                ( | Your model has possible overflow, and you want explicit saturation protection in the generated code. | Overflows saturate to either the minimum or maximum value that the data type can represent. | The maximum value that the  | 
| Clear this check box
                                ( | You want to optimize the efficiency of your generated code. You want to avoid overspecifying how a block handles out-of-range signals. For more information, see Troubleshoot Signal Range Errors (Simulink). | Overflows wrap to the appropriate value that the data type can represent. | The maximum value that the  | 
Programmatic Use
| Block Parameter: SaturateOnIntegerOverflow | 
| Type: character vector | 
| Values: "off" | "on" | 
| Default: "off" | 
Select this parameter to prevent the fixed-point tools from overriding the data type you specify for the block. For more information, see Use Lock Output Data Type Setting (Fixed-Point Designer).
Programmatic Use
| Block Parameter: LockScale | 
| Type: character vector | 
| Values: "off" | "on" | 
| Default: "off" | 
Data Type
Specify the data type for the linear coefficient estimates (beta) in the
        mdl output bus signal. The type can be inherited, specified directly,
      or expressed as a data type object such as Simulink.NumericType. 
For more information about data types, see Control Data Types of Signals (Simulink).
Click the Show data type assistant
      button  to display the Data Type Assistant,
      which helps you set the data type attributes. For more information, see Specify Data Types Using Data Type Assistant (Simulink).
 to display the Data Type Assistant,
      which helps you set the data type attributes. For more information, see Specify Data Types Using Data Type Assistant (Simulink).
Programmatic Use
| Block Parameter: BetaDataTypeStr | 
| Type: character vector or string | 
| Values: "Inherit: auto"|"double"|"single"|"half"|"int8"|"uint8"|"int16"|"uint16"|"int32"|"uint32"|"int64"|"uint64"|"boolean"|"fixdt(1,16,0)"|"fixdt(1,16,2^0,0)"|"<data type expression>" | 
| Default: "Inherit: auto" | 
Specify the lower value of the beta range that Simulink® checks.
Simulink uses the minimum value to perform:
- Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)). 
- Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)). 
- Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder). 
Note
The Beta data type Minimum parameter does not saturate or clip the actual beta estimate. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
| Block Parameter: BetaOutMin | 
| Type: character vector | 
| Values: "[]"|
                    scalar | 
| Default: "[]" | 
Specify the upper value of the beta range that Simulink checks.
Simulink uses the maximum value to perform:
- Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)). 
- Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)). 
- Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as SIL or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder). 
Note
The Beta data type Maximum parameter does not saturate or clip the actual beta estimate. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
| Block Parameter: BetaOutMax | 
| Type: character vector | 
| Values: "[]"|
                    scalar | 
| Default: "[]" | 
Specify the data type for the intercept estimates (bias) in the mdl
      output bus signal. The type can be inherited, specified directly, or expressed as a data type
      object such as Simulink.NumericType. 
For more information about data types, see Control Data Types of Signals (Simulink).
Click the Show data type assistant
      button  to display the Data Type Assistant,
      which helps you set the data type attributes. For more information, see Specify Data Types Using Data Type Assistant (Simulink).
 to display the Data Type Assistant,
      which helps you set the data type attributes. For more information, see Specify Data Types Using Data Type Assistant (Simulink).
Programmatic Use
| Block Parameter: BiasDataTypeStr | 
| Type: character vector or string | 
| Values: "Inherit: auto"|"double"|"single"|"half"|"int8"|"uint8"|"int16"|"uint16"|"int32"|"uint32"|"int64"|"uint64"|"boolean"|"fixdt(1,16,0)"|"fixdt(1,16,2^0,0)"|"<data type expression>" | 
| Default: "Inherit: auto" | 
Specify the lower value of the bias range that Simulink checks.
Simulink uses the minimum value to perform:
- Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)). 
- Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)). 
- Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder). 
Note
The Bias data type Minimum parameter does not saturate or clip the actual bias estimate. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
| Block Parameter: BiasOutMin | 
| Type: character vector | 
| Values: "[]"|
                    scalar | 
| Default: "[]" | 
Specify the upper value of the bias range that Simulink checks.
Simulink uses the maximum value to perform:
- Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)). 
- Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)). 
- Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as SIL or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder). 
Note
The Bias data type Maximum parameter does not saturate or clip the actual bias estimate. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
| Block Parameter: BiasOutMax | 
| Type: character vector | 
| Values: "[]"|
                    scalar | 
| Default: "[]" | 
Specify the data type for the internal states in the mdl output
            bus signal. The type can be inherited, specified directly, or expressed as a data type
            object such as Simulink.NumericType. 
For more information about data types, see Control Data Types of Signals (Simulink).
Click the Show data type
                assistant button  to display the Data Type
                Assistant, which helps you set the data type attributes. For more
            information, see Specify Data Types Using Data Type Assistant (Simulink).
 to display the Data Type
                Assistant, which helps you set the data type attributes. For more
            information, see Specify Data Types Using Data Type Assistant (Simulink).
Programmatic Use
| Block Parameter: StatesDataTypeStr | 
| Type: character vector or string | 
| Values: "Inherit: auto"|"double"|"single"|"half"|"int8"|"uint8"|"int16"|"uint16"|"int32"|"uint32"|"int64"|"uint64"|"boolean"|"fixdt(1,16,0)"|"fixdt(1,16,2^0,0)"|"<data type expression>" | 
| Default: "Inherit: auto" | 
Specify the lower value of the internal states range that Simulink checks.
Simulink uses the minimum value to perform:
- Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)). 
- Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)). 
- Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder). 
The Internal states data type Minimum parameter does not saturate or clip the actual internal states. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
| Block Parameter: StatesOutMin | 
| Type: character vector | 
| Values: "[]"|
                    scalar | 
| Default: "[]" | 
Specify the upper value of the internal states range that Simulink checks.
Simulink uses the maximum value to perform:
- Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)). 
- Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)). 
- Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as SIL or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder). 
The Internal states data type Maximum parameter does not saturate or clip the actual internal states. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
| Block Parameter: StatesOutMax | 
| Type: character vector | 
| Values: "[]"|
                    scalar | 
| Default: "[]" | 
Specify the data type for the internal prior term. The type can be inherited,
            specified directly, or expressed as a data type object such as
                Simulink.NumericType. 
For more information about data types, see Control Data Types of Signals (Simulink).
Click the Show data type
                assistant button  to display the Data Type
                Assistant, which helps you set the data type attributes. For more
            information, see Specify Data Types Using Data Type Assistant (Simulink).
 to display the Data Type
                Assistant, which helps you set the data type attributes. For more
            information, see Specify Data Types Using Data Type Assistant (Simulink).
Programmatic Use
| Block Parameter: PriorDataTypeStr | 
| Type: character vector or string | 
| Values: "double"|"single"|"half"|"int8"|"uint8"|"int16"|"uint16"|"int32"|"uint32"|"int64"|"uint64"|"boolean"|"fixdt(1,16,0)"|"fixdt(1,16,2^0,0)"|"<data type
                        expression>" | 
| Default: "double" | 
Specify the lower value of the prior term range that Simulink checks.
Simulink uses the minimum value to perform:
- Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)). 
- Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)). 
- Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder). 
The Prior data type Minimum parameter does not saturate or clip the actual prior term value. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
| Block Parameter: PriorOutMin | 
| Type: character vector | 
| Values: "[]"|
                    scalar | 
| Default: "[]" | 
Specify the upper value of the prior term range that Simulink checks.
Simulink uses the maximum value to perform:
- Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)). 
- Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)). 
- Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as SIL or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder). 
The Prior data type Maximum parameter does not saturate or clip the actual prior term value. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
| Block Parameter: PriorOutMax | 
| Type: character vector | 
| Values: "[]"|
                    scalar | 
| Default: "[]" | 
Specify the data type for the predictor means (mu) in the mdl output
      bus signal. The type can be inherited, specified directly, or expressed as a data type object
      such as Simulink.NumericType. 
If you do not specify Standardize="true" when you
      create the initial model, then the IncrementalClassificationLinear Fit block sets mu to
        0.
For more information about data types, see Control Data Types of Signals (Simulink).
Click the Show data type assistant
      button  to display the Data Type Assistant,
      which helps you set the data type attributes. For more information, see Specify Data Types Using Data Type Assistant (Simulink).
 to display the Data Type Assistant,
      which helps you set the data type attributes. For more information, see Specify Data Types Using Data Type Assistant (Simulink).
Programmatic Use
| Block Parameter: MuDataTypeStr | 
| Type: character vector or string | 
| Values: "Inherit: auto"|"double"|"single"|"half"|"int8"|"uint8"|"int16"|"uint16"|"int32"|"uint32"|"int64"|"uint64"|"boolean"|"fixdt(1,16,0)"|"fixdt(1,16,2^0,0)"|"<data type expression>" | 
| Default: "Inherit: auto" | 
Specify the lower value of the mu range that Simulink checks.
Simulink uses the minimum value to perform:
- Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)). 
- Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)). 
- Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder). 
Note
The Mu data type Minimum parameter does not saturate or clip the actual mu value. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
| Block Parameter: MuOutMin | 
| Type: character vector | 
| Values: "[]"|
                    scalar | 
| Default: "[]" | 
Specify the upper value of the mu range that Simulink checks.
Simulink uses the maximum value to perform:
- Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)). 
- Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)). 
- Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as SIL or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder). 
Note
The Mu data type Maximum parameter does not saturate or clip the actual mu value. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
| Block Parameter: MuOutMax | 
| Type: character vector | 
| Values: "[]"|
                    scalar | 
| Default: "[]" | 
Specify the data type for the predictor standard deviations (sigma) in the
        mdl output bus signal. The type can be inherited, specified directly,
      or expressed as a data type object such as Simulink.NumericType. 
If you do not specify Standardize=true when you
      create the initial model, then the IncrementalClassificationLinear Fit block sets sigma to
        0.
For more information about data types, see Control Data Types of Signals (Simulink).
Click the Show data type assistant
      button  to display the Data Type Assistant,
      which helps you set the data type attributes. For more information, see Specify Data Types Using Data Type Assistant (Simulink).
 to display the Data Type Assistant,
      which helps you set the data type attributes. For more information, see Specify Data Types Using Data Type Assistant (Simulink).
Programmatic Use
| Block Parameter: SigmaDataTypeStr | 
| Type: character vector or string | 
| Values: "Inherit: auto"|"double"|"single"|"half"|"int8"|"uint8"|"int16"|"uint16"|"int32"|"uint32"|"int64"|"uint64"|"boolean"|"fixdt(1,16,0)"|"fixdt(1,16,2^0,0)"|"<data type expression>" | 
| Default: "Inherit: auto" | 
Specify the lower value of the sigma range that Simulink checks.
Simulink uses the minimum value to perform:
- Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)). 
- Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)). 
- Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder). 
Note
The Sigma data type Minimum parameter does not saturate or clip the actual sigma value. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
| Block Parameter: SigmaOutMin | 
| Type: character vector | 
| Values: "[]"|
                    scalar | 
| Default: "[]" | 
Specify the upper value of the sigma range that Simulink checks.
Simulink uses the maximum value to perform:
- Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)). 
- Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)). 
- Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as SIL or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder). 
Note
The Sigma data type Maximum parameter does not saturate or clip the actual sigma value. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
| Block Parameter: SigmaOutMax | 
| Type: character vector | 
| Values: "[]"|
                    scalar | 
| Default: "[]" | 
Block Characteristics
| Data Types | 
 | 
| Direct Feedthrough | 
 | 
| Multidimensional Signals | 
 | 
| Variable-Size Signals | 
 | 
| Zero-Crossing Detection | 
 | 
Extended Capabilities
C/C++ Code Generation
 Generate C and C++ code using Simulink® Coder™.
Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™. 
Version History
Introduced in R2023bThe IncrementalClassificationLinear Fit has a new reset inport that allows the resetting of the learned parameters, if any, of the incremental learning model. If any hyperparameters of the model are estimated during incremental training, those get reset as well. Use the reset signal when performing drift-aware learning to reset the model parameters when drift is detected.
The IncrementalClassificationLinear Fit block now additionally supports initial machine learning models
				where Solver is "sgd" or
					"asgd".
See Also
Blocks
Objects
Functions
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Seleccione un país/idioma
Seleccione un país/idioma para obtener contenido traducido, si está disponible, y ver eventos y ofertas de productos y servicios locales. Según su ubicación geográfica, recomendamos que seleccione: .
También puede seleccionar uno de estos países/idiomas:
Cómo obtener el mejor rendimiento
Seleccione China (en idioma chino o inglés) para obtener el mejor rendimiento. Los sitios web de otros países no están optimizados para ser accedidos desde su ubicación geográfica.
América
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)



