# plus, +

## Syntax

``A + B``
``plus(A,B)``

## Description

example

``A + B` adds `A` and `B`.`

example

````plus(A,B)` is equivalent to `A + B`.```

## Examples

`plus` adds `x` to each element of the array.

```syms x A = [x sin(x) 3]; A + x```
```ans = [ 2*x, x + sin(x), x + 3]```

Add the identity matrix to matrix `M`.

```syms x M = [x x^2;Inf 0]; M + eye(2)```
```ans = [ x + 1, x^2] [ Inf, 1]```

Alternatively, use `plus(M,eye(2))`.

`plus(M,eye(2))`
```ans = [ x + 1, x^2] [ Inf, 1]```

```syms f(x) g(x) f(x) = x^2 + 5*x + 6; g(x) = 3*x - 2; h = f + g```
```h(x) = x^2 + 8*x + 4```

### Add Expression to Symbolic Function

Add expression `expr` to function `f`.

```syms f(x) f(x) = x^2 + 3*x + 2; expr = x^2 - 2; f(x) = f(x) + expr```
```f(x) = 2*x^2 + 3*x```

## Input Arguments

collapse all

Input, specified as a symbolic scalar variable, matrix variable, function, matrix function, expression, or vector, matrix, or array of symbolic scalar variables.

Input, specified as a symbolic scalar variable, matrix variable, function, matrix function, expression, or vector, matrix, or array of symbolic scalar variables.

## Tips

• All nonscalar arguments must be the same size. If one input argument is nonscalar, then `plus` expands the scalar into an array of the same size as the nonscalar argument, with all elements equal to the scalar.

## Version History

Introduced before R2006a

expand all