[A,b] =
equationsToMatrix(eqns)
converts equations eqns to matrix form. eqns must
be a linear system of equations in all variables that symvar finds in
eqns.
Convert a system of linear equations to matrix form. equationsToMatrix automatically detects the variables in the equations by using symvar. The returned coefficient matrix follows the variable order determined by symvar.
Convert a linear system of equations to the matrix form by specifying independent variables. This is useful when the equations are only linear in some variables.
For this system, specify the variables as [s t] because the system is not linear in r.
Consider the following system of linear equations that are functions of time:
Declare the system of equations.
syms x(t)y(t)z(t)u(t)v(t)
eqn1 = 2*x + y + z == 2*u;
eqn2 = -x + y - z == v;
eqn3 = x + 2*y + 3*z == -10;
eqn = [eqn1; eqn2; eqn3]
eqn(t) =
Specify the independent variables , , and in the equations as a symbolic vector vars. Use the equationsToMatrix function to convert the system of equations into the matrix form.
vars = [x(t); y(t); z(t)];
[A,b] = equationsToMatrix(eqn,vars)
A =
b =
Solve the matrix form of the equations using the linsolve function.
X = linsolve(A,b)
X =
Evaluate the solution for the functions and . Plot the solution.
Linear equations, specified as a vector of symbolic equations or expressions.
Symbolic equations are defined by using the == operator, such as
x + y == 1. For symbolic expressions,
equationsToMatrix assumes that the right side is 0.
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window.
Web browsers do not support MATLAB commands.
Seleccione un país/idioma
Seleccione un país/idioma para obtener contenido traducido, si está disponible, y ver eventos y ofertas de productos y servicios locales. Según su ubicación geográfica, recomendamos que seleccione: .
También puede seleccionar uno de estos países/idiomas:
Cómo obtener el mejor rendimiento
Seleccione China (en idioma chino o inglés) para obtener el mejor rendimiento. Los sitios web de otros países no están optimizados para ser accedidos desde su ubicación geográfica.