gegenbauerC
Gegenbauer polynomials
Syntax
Description
gegenbauerC(
        represents the n,a,x)nth-degree Gegenbauer
          (ultraspherical) polynomial with parameter a at the point
          x.
Examples
First Four Gegenbauer Polynomials
Find the first four Gegenbauer polynomials for the parameter
            a and variable x.
syms a x gegenbauerC([0, 1, 2, 3], a, x)
ans = [ 1, 2*a*x, (2*a^2 + 2*a)*x^2 - a,... ((4*a^3)/3 + 4*a^2 + (8*a)/3)*x^3 + (- 2*a^2 - 2*a)*x]
Gegenbauer Polynomials for Numeric and Symbolic Arguments
Depending on its arguments, gegenbauerC returns
          floating-point or exact symbolic results.
Find the value of the fifth-degree Gegenbauer polynomial for the parameter a =
          1/3 at these points. Because these numbers are not symbolic objects,
          gegenbauerC returns floating-point results.
gegenbauerC(5, 1/3, [1/6, 1/4, 1/3, 1/2, 2/3, 3/4])
ans =
    0.1520    0.1911    0.1914    0.0672   -0.1483   -0.2188Find the value of the fifth-degree Gegenbauer polynomial for the same numbers converted
        to symbolic objects. For symbolic numbers, gegenbauerC returns exact
        symbolic results.
gegenbauerC(5, 1/3, sym([1/6, 1/4, 1/3, 1/2, 2/3, 3/4]))
ans = [ 26929/177147, 4459/23328, 33908/177147, 49/729, -26264/177147, -7/32]
Evaluate Chebyshev Polynomials with Floating-Point Numbers
Floating-point evaluation of Gegenbauer polynomials by direct calls
          of gegenbauerC is numerically stable. However, first computing the
          polynomial using a symbolic variable, and then substituting variable-precision values into
          this expression can be numerically unstable.
Find the value of the 500th-degree Gegenbauer polynomial for the parameter
          4 at 1/3 and vpa(1/3).
        Floating-point evaluation is numerically stable.
gegenbauerC(500, 4, 1/3) gegenbauerC(500, 4, vpa(1/3))
ans = -1.9161e+05 ans = -191609.10250897532784888518393655
Now, find the symbolic polynomial C500 = gegenbauerC(500, 4, x), and
        substitute x = vpa(1/3) into the result. This approach is numerically
        unstable.
syms x C500 = gegenbauerC(500, 4, x); subs(C500, x, vpa(1/3))
ans = -8.0178726380235741521208852037291e+35
Approximate the polynomial coefficients by using vpa, and then
        substitute x = sym(1/3) into the result. This approach is also
        numerically unstable.
subs(vpa(C500), x, sym(1/3))
ans = -8.1125412405858470246887213923167e+36
Plot Gegenbauer Polynomials
Plot the first five Gegenbauer polynomials for the parameter a = 3.
syms x y fplot(gegenbauerC(0:4,3,x)) axis([-1 1 -10 10]) grid on ylabel('G_n^3(x)') title('Gegenbauer polynomials') legend('G_0^3(x)', 'G_1^3(x)', 'G_2^3(x)', 'G_3^3(x)', 'G_4^3(x)',... 'Location', 'Best')

Input Arguments
More About
Tips
- gegenbauerCreturns floating-point results for numeric arguments that are not symbolic objects.
- gegenbauerCacts element-wise on nonscalar inputs.
- All nonscalar arguments must have the same size. If one or two input arguments are nonscalar, then - gegenbauerCexpands the scalars into vectors or matrices of the same size as the nonscalar arguments, with all elements equal to the corresponding scalar.
References
[1] Hochstrasser, U. W. “Orthogonal Polynomials.” Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.
[2] Cohl, Howard S., and Connor MacKenzie. “Generalizations and Specializations of Generating Functions for Jacobi, Gegenbauer, Chebyshev and Legendre Polynomials with Definite Integrals.” Journal of Classical Analysis, no. 1 (2013): 17–33. https://doi.org/10.7153/jca-03-02.
Version History
Introduced in R2014b
See Also
chebyshevT | chebyshevU | hermiteH | jacobiP | laguerreL | legendreP