Main Content

wlanHTLTFDemodulate

Demodulate HT-LTF waveform

Description

sym = wlanHTLTFDemodulate(rx,cfg) returns the demodulated HT-LTF1 by demodulating received time-domain HT-LTF signal rx by using transmission parameters cfg. The input signal is a component of the HT-mixed format PPDU.

example

sym = wlanHTLTFDemodulate(rx,cfg,symOffset) specifies the OFDM symbol sampling offset as a fraction of the cyclic prefix length.

example

Examples

collapse all

Create an HT configuration object.

cfg = wlanHTConfig;

Generate an HT-LTF signal based on the object.

x = wlanHTLTF(cfg);

Pass the HT-LTF signal through an AWGN channel.

y = awgn(x,20);

Demodulate the received signal.

z = wlanHTLTFDemodulate(y,cfg);

Display the scatter plot of the demodulated signal.

scatterplot(z)

Figure Scatter Plot contains an axes object. The axes object with title Scatter plot, xlabel In-Phase, ylabel Quadrature contains a line object which displays its values using only markers. This object represents Channel 1.

Create an HT configuration object having two transmit antennas and two space-time streams.

cfg = wlanHTConfig('NumTransmitAntennas',2,'NumSpaceTimeStreams',2, ...
    'MCS',8);

Generate the HT-LTF based on the configuration object.

x = wlanHTLTF(cfg);

Pass the HT-LTF signal through an AWGN channel.

y = awgn(x,10);

Demodulate the received signal. Set the OFDM symbol offset to 0.5, which corresponds to 1/2 of the cyclic prefix length.

z = wlanHTLTFDemodulate(y,cfg,0.5);

Input Arguments

collapse all

Received time-domain signal, specified as a complex-valued matrix of size Ns-by-Nr.

  • Ns is the number of time-domain samples. If Ns is not an integer multiple of the OFDM symbol length, Ls, for the specified field,then the function ignores the remaining mod(Ns,Ls) symbols.

  • Nr is the number of receive antennas.

Data Types: single | double
Complex Number Support: Yes

HT format configuration, specified as a wlanHTConfig object.

OFDM symbol sampling offset, as a fraction of the cyclic prefix length, specified as a scalar in the interval [0, 1].

The value that you specify indicates the start location for OFDM demodulation relative to the beginning of the cyclic prefix.

Example: 0.45

Data Types: single | double

Output Arguments

collapse all

Demodulated frequency-domain signal, returned as a complex-valued array of size Nsc-by-Nsym-by-Nr.

  • Nsc is the number of active occupied subcarriers in the demodulated field.

  • Nsym is the number of OFDM symbols.

  • Nr is the number of receive antennas.

Data Types: single | double
Complex Number Support: Yes

More About

collapse all

References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology — Telecommunications and information exchange between systems — Local and metropolitan area networks — Specific requirements — Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Extended Capabilities

expand all

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Version History

Introduced in R2015b

expand all


1 IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights reserved.