finding neighbor of a position

5 visualizaciones (últimos 30 días)
Mohammad Golam Kibria
Mohammad Golam Kibria el 26 de Jun. de 2011
Hi, I have a matrix.
I =
1 0 0
2 5 0
0 0 3
0 0 0
I know the position of 5 in I is 6 linear index.
is there any easy function to have the 8 other neighbors of 5. Thanks

Respuesta aceptada

Oleg Komarov
Oleg Komarov el 26 de Jun. de 2011
EDITED: should be fine now
I =[ 1 0 0
2 5 0
0 0 3
0 0 0];
l = 8;
sz = size(I);
% row, col subs of center
[r,c] = ind2sub(sz,l); % c = ceil(l/4); r = mod(l,4)+ c*sz(1);
% Calculate 8 neighbors
neigh(1:8,1:2) = [r+[-1;0;1;-1;1;-1;0;1] c+[-1;-1;-1;0;0;1;1;1] ];
% Only those in the range
neigh = neigh(all(neigh,2) & neigh(:,1) <= sz(1) & neigh(:,2) <= sz(2),:);
% Convert to position
idx = (neigh(:,2)-1)*sz(1) + neigh(:,1);
  3 comentarios
Oleg Komarov
Oleg Komarov el 27 de Jun. de 2011
Hopefuly now is ok. Tested initial and final position.
Mohammad Golam Kibria
Mohammad Golam Kibria el 28 de Jun. de 2011
Thanks

Iniciar sesión para comentar.

Más respuestas (3)

Sean de Wolski
Sean de Wolski el 27 de Jun. de 2011
idx = find(conv2(double(I==5),ones(3),'same'))
%This includes the 6, but that could easily be taken care of with setdiff.

Wolfgang Schwanghart
Wolfgang Schwanghart el 26 de Jun. de 2011
  3 comentarios
Wolfgang Schwanghart
Wolfgang Schwanghart el 27 de Jun. de 2011
I = [ 1 0 0;
2 5 0;
0 0 3;
0 0 0];
% find the neighbors of the elements where I = 5
I5 = I==5;
[ix,ixn] = ixneighbors(I,I5)
ix =
6
6
6
6
6
6
6
6
ixn =
10
7
2
5
9
1
11
3
% thus, ixn are the linear indices of the neighbors of the indices ix.
% You'll find the values associated with the neighbors by
I(ixn)
ans =
0
0
2
0
0
1
3
0
Mohammad Golam Kibria
Mohammad Golam Kibria el 28 de Jun. de 2011
thanks,this also works fine for me

Iniciar sesión para comentar.


Andrei Bobrov
Andrei Bobrov el 26 de Jun. de 2011
idl = 6;
idxs = ...
nonzeros(bsxfun(@plus,idl - [1 0 -1]',size(I,1)*[-1 0 1]).*[1 1 1;1 0 1;1 1 1])
CORRECTED 06/27/2011 10:05 MSK
idl = 6;
s = size(I);
I0 = zeros(s+2);
I0(2:end-1,2:end-1) = reshape(1:numel(I),s);
idxs = nonzeros(I0(bsxfun(@plus,find(I0==idl) - [1 0 -1]',(s(1)+2)*[-1 0 1])).*[1 1 1;1 0 1;1 1 1])
MORE variant (06/27/2011 11:12 MSK)
s = size(I);
[ii jj] = ind2sub(s,idl);
v = [-1 -1 -1;0 0 0;1 1 1];
R=ii+v;
C=jj+v';
loc = (R<=s(1) & R>=1&C<=s(2) & C>=1&[1 1 1;1 0 1;1 1 1])>0;
idxl = sub2ind(s,R(loc),C(loc));
MORE variant 2 (06/27/2011 11:35 MSK) with idea of Oleg
s = size(I);
[ii jj] = ind2sub(s,idl);
R = ii + [-1 0 1 -1 1 -1 0 1];
C = jj + [-1 -1 -1 0 0 1 1 1];
loc = (R<=s(1) & R>=1&C<=s(2) & C >= 1 )>0;
idxl = sub2ind(size(I),R(loc),C(loc));
LAST variant (06/27/2011 13:43 MSK)
I1 = zeros(size(I));
I1(idl)=1;
idx = find(bwdist(I1,'chessboard')==1)
or
idx = find(bwdist(I==5,'chessboard')==1)
  3 comentarios
Andrei Bobrov
Andrei Bobrov el 27 de Jun. de 2011
Thanks Oleg! Corrected...
Mohammad Golam Kibria
Mohammad Golam Kibria el 28 de Jun. de 2011
Thanks this also works fine for me

Iniciar sesión para comentar.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by