convolution of exponential with unit step ... using conv command
82 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hi everybody,
Suppose we have two signals:
u(t) : unit step function and h(t) = exp(-t) * u(t)
Let us calculate their convolution. Doing that on paper is pretty easy, the result will be y(t) = (1-exp(-t)) * u(t). i.e the function will increase till it reaches the value of 1 and then it becomes constant = 1.
The big question is that why the following code produces wrong answer after time of 10s (this time is the length of the original signals)? In other words, why the result starts decaying after this time instant and reaches zero ?!
Code:
t = -1:0.01:10;
u = heaviside(t);
u(u==0.5) = 1;
subplot(221), plot(t,u), axis([-1 10 -.5 1.5])
h = exp(-t).* u;
subplot(222), plot(t,h), axis([-1 10 -.5 1.5])
C = conv(h,u)/100;
tc = [-200:length(C)-1-200]/100;
subplot(2,2,3:4), plot(tc,C), axis([-1 20 -.5 1.5])
0 comentarios
Respuestas (3)
MUHAMMAD EZARISMA AFIF WISYU HARDI
el 31 de Dic. de 2020
Editada: Walter Roberson
el 31 de Dic. de 2020
t = -1:0.01:10;
u = heaviside(t);
u(u==0.5) = 1;
subplot(221), plot(t,u), axis([-1 10 -.5 1.5])
h = exp(-t).* u;
subplot(222), plot(t,h), axis([-1 10 -.5 1.5])
C = conv(h,u)/100;
tc = [-200:length(C)-1-200]/100;
subplot(2,2,3:4), plot(tc,C), axis([-1 20 -.5 1.5])
0 comentarios
David Goodmanson
el 31 de Dic. de 2020
Editada: David Goodmanson
el 31 de Dic. de 2020
Hi Muhammed,
since your reply is a copy of the the orignal code, nothing changes. Anyway, the reason for the effect is that when t stops at t = 10, the heaviside function effectively becomes the rectangle function U = heaviside(t).*heaviside(10-t). The convultion does exactly what it is supposed to with that, and gives the same result as you would get by doing the convolution of h with U.
0 comentarios
Walter Roberson
el 31 de Dic. de 2020
Editada: Walter Roberson
el 31 de Dic. de 2020
t = -1:0.01:10;
u = heaviside(t);
u(u==0.5) = 1;
subplot(2,2,1); plot(t,u); axis([-1 10 -.5 1.5]);
h = exp(-t).* u;
subplot(2,2,2); plot(t,h); axis([-1 10 -.5 1.5]);
C = conv(h,u)/100;
tc = [-200:length(C)-1-200]/100;
subplot(2,2,3); plot(tc,C); axis([-1 20 -.5 1.5]);
Cv = conv(fliplr(h), u, 'same')/100;
subplot(2,2,4); plot(Cv)
Remember that convolution implicitly reverses one of the functions
0 comentarios
Ver también
Categorías
Más información sobre Data Distribution Plots en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!