Plot autocorrelation and power spectrum
7 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Aik Hong
el 15 de Dic. de 2013
Comentada: Aik Hong
el 16 de Dic. de 2013
Hi..i'm a beginner in using Matlab. I'm currently trying to generate a Gaussian random numbers, then use it as an input to a low pass filter, cut-off frequency 1000Hz. I have the random number generated as: : f = randn(1000,1) * sqrt(2) + 0; I'd like to ask how can i proceed from here to calculate and plot the autocorrelation and power spectrum at input/output of the filter.
0 comentarios
Respuesta aceptada
Wayne King
el 15 de Dic. de 2013
If you have the Signal Processing Toolbox, simply use xcorr() and periodogram()
x = sqrt(2)*randn(1000,1);
Numlags = 50;
[xc,lags] = xcorr(x,Numlags,'coeff');
stem(lags(51:end),xc(51:end))
% power spectrum
Fs = 1; % sampling frequency
[Pxx,F] = periodogram(x,[],length(x),Fs);
figure;
plot(F,10*log10(Pxx))
4 comentarios
Wayne King
el 16 de Dic. de 2013
You need more information than that. You need to know minimally the sampling frequency.
Más respuestas (1)
Wayne King
el 16 de Dic. de 2013
It depends on what you have exported. If you exported a filter object -- I'll assume this.
Let Hd be your filter object
x = randn(1000,1); % white noise input 1,000 samples in length
y = filter(Hd,x);
Ver también
Categorías
Más información sobre Filter Design en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

