Non-linear optimization with fmincon

2 visualizaciones (últimos 30 días)
juan pf
juan pf el 25 de Mzo. de 2014
Editada: juan pf el 25 de Mzo. de 2014
Hi
I am solving a nonlinear convex optimization problem. The problem has equality nonlinear constraints. I also have non-negativity constraints. For some reason Matlab does not respect the non negativity constraints and finds an optimum in negative numbers. I have no idea why it does this.
Thanks in advance!
Juan
problem.x0 =x0;
problem.objective =@(x)objfun(x);
problem.nonlcon =@(x)confuneq(x,b1d,b1f,M1,z,g);
problem.solver ='fmincon';
problem.options =optimset('Display','iter-detailed');
problem.lb =[0.1 0.1 0.1 0.1];
problem.ub =[1000 1000 0.9 0.9];

Respuesta aceptada

Alan Weiss
Alan Weiss el 25 de Mzo. de 2014
Please show us your options and your call to fmincon and the resulting output. If you are using the interior-point or sqp algorithms, then fmincon strictly obeys bounds, and unless your problem is 5-dimensional or higher, all your solution components should be above 0.1.
Alan Weiss
MATLAB mathematical toolbox documentation

Más respuestas (1)

juan pf
juan pf el 25 de Mzo. de 2014
Editada: juan pf el 25 de Mzo. de 2014
Thank you very much for your answer -- now works! The options are below.
x0=[0.5 0.5 0.5];
problem.x0 =x0; problem.objective =@(x)objfun(x); problem.nonlcon =@(x)confuneq(x,b1d,b1f,M1,z,g); problem.Algorithm = 'sqp'; problem.solver ='fmincon'; problem.options =optimset('Display','iter-detailed'); problem.lb =[0.1 0.1 0.1]; problem.ub =[2 20 0.9];
tic; [x,fval]=fmincon(problem); time=toc;

Categorías

Más información sobre Nonlinear Optimization en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by