- Prepare your data.
- Define the Kernel Function
- Perform KPCA on Training Data
- Project Data and Calculate Monitoring Statistics
- Monitor Test Data
kernel PCA for process monitoring
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Has any body got a working MATLAB code for kernel PCA for process monitoring which includes how to obtain the monitoring statistics(T2 an SPE), please?
0 comentarios
Respuestas (1)
Aditya
el 8 de Feb. de 2025
Hi Raphael,
Kernel PCA (KPCA) can be a powerful tool for process monitoring, especially when dealing with nonlinear data. To implement KPCA for process monitoring in MATLAB, you'll need to follow these steps, including calculating the monitoring statistics ( T^2 ) and SPE (Squared Prediction Error).
Here’s a basic outline of how you can implement KPCA and compute the monitoring statistics:
Following is the example code for the same:
function K = rbf_kernel(X, Y, sigma)
% X and Y are data matrices where each column is an observation
% sigma is the bandwidth of the Gaussian kernel
sqDist = pdist2(X', Y').^2;
K = exp(-sqDist / (2 * sigma^2));
end
% Assume trainData is your training data matrix (size n x m)
sigma = 1.0; % Example value for the Gaussian kernel
% Compute the kernel matrix
K_train = rbf_kernel(trainData, trainData, sigma);
% Center the kernel matrix
N = size(K_train, 1);
oneN = ones(N, N) / N;
K_train_centered = K_train - oneN * K_train - K_train * oneN + oneN * K_train * oneN;
% Solve the eigenvalue problem
[eigenvectors, eigenvalues] = eig(K_train_centered);
eigenvalues = diag(eigenvalues);
% Sort eigenvalues and eigenvectors
[~, idx] = sort(eigenvalues, 'descend');
eigenvectors = eigenvectors(:, idx);
eigenvalues = eigenvalues(idx);
% Number of principal components to retain
numComponents = 5;
% Projection matrix
alpha = eigenvectors(:, 1:numComponents);
lambda = eigenvalues(1:numComponents);
% Project training data
projectedTrainData = K_train_centered * alpha;
% Calculate T^2 and SPE for training data
T2_train = sum((projectedTrainData ./ sqrt(lambda')).^2, 2);
reconstructedTrainData = projectedTrainData * alpha';
SPE_train = sum((K_train_centered - reconstructedTrainData).^2, 2);
% Compute the kernel matrix between test and training data
K_test_train = rbf_kernel(testData, trainData, sigma);
% Center the test kernel matrix
K_test_centered = K_test_train - oneN * K_train - K_test_train * oneN + oneN * K_train * oneN;
% Project test data
projectedTestData = K_test_centered * alpha;
% Calculate T^2 and SPE for test data
T2_test = sum((projectedTestData ./ sqrt(lambda')).^2, 2);
reconstructedTestData = projectedTestData * alpha';
SPE_test = sum((K_test_centered - reconstructedTestData).^2, 2);
0 comentarios
Ver también
Categorías
Más información sobre Dimensionality Reduction and Feature Extraction en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!