# ODEs system

1 view (last 30 days)
Andrea on 26 Jul 2011
i'm trying to solve this system of differential equations, can someone told me how to use the ODE45 function?
dPp/dz= Pp*gammap*(sigmape*N2 −sigmapa*N1)−α*Pp;
dPs/dz= Ps*gammas*(sigmase*N2 −sigmasa*N1)−α*Ps:
dPASE/dz=PASE*gammas*(sigmaSE*N2-sigmasa*N1)+2*sigmase*h*gammas*Vs*Δv-alfas*PASE;
with N1=ρ*(1+W12*t)/(1+(W12+W21)*t+R*t)
N2=ρ*(R*t+W21*t)/(1+(W12+W21)*t+R*t)
W12=[(sigmasa*gammas) / (h*Vs*A)](Ps+PASE) W21=[(sigmase*gammas) / (h*Vs*A)](Ps+PASE) R=[(Pp*gammap*sigmapa) / (h*Vp*A)](Ps+PASE)
(gammap,gammas,sigmase,sigmape,sigmapa,sigmasa,h,Vs,Vp,A,Δv,α,ρ are known parameters).

Arnaud Miege on 29 Jul 2011
Also, there seems to be 4 variables, not three. Below is the modified code I used and the results I get with your parameters. Again, check the values and the units.
Pp=y(1);
Ps=y(2);
PASE_plus=y(3);
PASE_minus=y(4);
W12=(((sigmasa*gammas)/(h*Vs*A))*(Ps+PASE_plus+PASE_minus));
W21=(((sigmase*gammas)/(h*Vs*A))*(Ps+PASE_plus+PASE_minus));
R=((Pp*gammap*sigmapa)/(h*Vp*A));
N1=(rho*((1+W21*t)/(1+(W12+W21)*t+R*t)));
N2=(rho*((R*t+W12*t)/(1+(W12+W21)*t+R*t)));
dydz(1)=Pp*gammap*(sigmape*N2-sigmapa*N1)-alfap*Pp;
dydz(2)=Ps*gammas*(sigmase*N2-sigmasa*N1)-alfas*Ps;
dydz(3)=PASE_plus*gammas*(sigmase*N2- ... sigmasa*N1)+2*sigmase*N2*gammas*h*Vs*deltav-alfas*PASE_plus;
dydz(4)=-PASE_minus*gammas*(sigmase*N2- ... sigmasa*N1)+2*sigmase*N2*gammas*h*Vs*deltav+alfas*PASE_minus;
And this is how I call the|ode| solver:
[z,y]=ode45('signalFW',[0 20],[10 0.001 0 0]);
figure(1),subplot(2,1,1),plot(z,y(:,1:2)),grid on,ylabel('Power in mW'),legend('Pp','Ps');
subplot(2,1,2),plot(z,y(:,3:4)),grid on,xlabel('length EDFA in m'),ylabel('Power in mW'),legend('PASE+','PASE-');
This gives me the following results:
Is that what you'd expect? If not, check the values of your parameters.
Arnaud

#### 1 Comment

Andrea on 29 Jul 2011
Your results are the same as mine..maybe there is something wrong with the parameters. Thank you!

Arnaud Miege on 27 Jul 2011
Have a look at the examples provided in the documentation. You need to write a function that computes the derivatives of your variables as a function of time and the variables themselves, and pass this to the ode solver.
HTH,
Arnaud

Arnaud Miege on 28 Jul 2011
I don't have an account, so can't access either publication.
Andrea on 28 Jul 2011
Can I send you an e-mail?
Arnaud Miege on 29 Jul 2011
Can you just upload an image of the equations and the results you expect for certain numerical parameters?

Arnaud Miege on 29 Jul 2011
This is the results I get with your code:

Andrea on 29 Jul 2011
You can find the model and the result in these two articles (the correct model is in the second)
http://www.sendspace.com/file/uujskz
http://www.sendspace.com/file/c7abb0
Is my code correct (for the first iteration of the article's model?)
Arnaud Miege on 29 Jul 2011
The code looks correct if you refer to equations (1) to (9) of the paper. However, you should check that the units used for the various parameters are consistent, and that the numerical values make sense.