Different Values if K-means Clustring on same data.
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Khawaja Asim
el 8 de Abr. de 2014
Comentada: Walter Roberson
el 8 de Abr. de 2014
I have been using matlab function of K-means clustring for making clusters of data. I happen to apply it on same data. But got wildly different results every time. I know the reason for this. But I need sugestions for overcoming this issue. Should I use some modified version of K-means or Should look for some other clustering technique?
K-means command which i used is "kmeans(Feature_Matrix,20,'Replicates',5,'emptyaction','singleton');
0 comentarios
Respuesta aceptada
Shashank Prasanna
el 8 de Abr. de 2014
Editada: Shashank Prasanna
el 8 de Abr. de 2014
Kmeans can get stuck in local minima. By which I mean it is sensitive to initial centroid positions. You can specify a higher number of replicates to increase you chances of getting a global solution.
If you are interested in exploring other clustering algorithms, find all the supported ones here:
2 comentarios
Walter Roberson
el 8 de Abr. de 2014
kmeans uses random initialization of cluster positions, unless you pass it specific positions to start at.
Más respuestas (0)
Ver también
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!