Different Values if K-means Clustring on same data.

1 visualización (últimos 30 días)
Khawaja Asim
Khawaja Asim el 8 de Abr. de 2014
Comentada: Walter Roberson el 8 de Abr. de 2014
I have been using matlab function of K-means clustring for making clusters of data. I happen to apply it on same data. But got wildly different results every time. I know the reason for this. But I need sugestions for overcoming this issue. Should I use some modified version of K-means or Should look for some other clustering technique?
K-means command which i used is "kmeans(Feature_Matrix,20,'Replicates',5,'emptyaction','singleton');

Respuesta aceptada

Shashank Prasanna
Shashank Prasanna el 8 de Abr. de 2014
Editada: Shashank Prasanna el 8 de Abr. de 2014
Kmeans can get stuck in local minima. By which I mean it is sensitive to initial centroid positions. You can specify a higher number of replicates to increase you chances of getting a global solution.
If you are interested in exploring other clustering algorithms, find all the supported ones here:
  2 comentarios
Walter Roberson
Walter Roberson el 8 de Abr. de 2014
kmeans uses random initialization of cluster positions, unless you pass it specific positions to start at.

Iniciar sesión para comentar.

Más respuestas (0)

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by