I need a starting point for choosing "spread" when using newrb()
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Shadan
el 24 de Abr. de 2014
Comentada: Shadan
el 29 de Abr. de 2014
My data sets consist of 62 inputs and one output and I want to do function approximation. I understand that the optimum "spread" value is usually determined by trial and error. However, I was wondering if there is any way of approximating this value ( just to get a sense of its greatness )? My second question is regarding the minimum number of training samples required when using newrb. Is it just like the feedforward neural networks, the more the better?
Thank you for your support
0 comentarios
Respuesta aceptada
Greg Heath
el 28 de Abr. de 2014
Editada: Greg Heath
el 28 de Abr. de 2014
If you standardize inputs (zscore or mapstd) the unity default is a good starting place.
The best generalization performance comes from using as few hidden neurons as possible.
Search the neural net literature (e.g., comp.ai.neural-nets FAQ) using the terms
overfitting
overtraining
Más respuestas (0)
Ver también
Categorías
Más información sobre Deep Learning Toolbox en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!