time integration via frequency domain
24 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hey!
I have been trying to get this integration by fft and dividing by 2*pi*f*i working but the amplitude is wrong all the time. Basically my code is the same as in this example: http://www.mathworks.com/matlabcentral/answers/17611-how-to-convert-a-accelerometer-data-to-displacements
So
function int_time_data = integrate(data,dt)
N1 = length(data);
N = 2^nextpow2(N1);
if N > N1
data(N1+1:N) = 0; % pad array with 0's
end
df = 1 / (N*dt); % frequency increment
Nyq = 1 / (2*dt); % Nyquist frequency
freq_data = (fftshift(fft(data)));
int_freq_data = zeros(size(freq_data));
f = -Nyq:df:Nyq-df;
for i = 1 : N
if f(i) ~= 0
int_freq_data(i) = freq_data(i)/(2*pi*f(i)*sqrt(-1));
else
int_freq_data(i) = 0;
end
end
int_time_data = ifft(ifftshift((int_freq_data)));
int_time_data = int_time_data(1:N1);
end
dt = 0.01; % seconds per sample
N = 512; % number of samples
t = 0 : dt : (N-1)*dt; % in seconds
wave_freq = 17.1; % in Hertz
data = sin(2*pi*wave_freq*t);
integrated_time_data = integrate(data,dt);
integrated_time_data_analytical = -1/(2*pi*wave_freq)*cos(2*pi*wave_freq*t);
plot(t,integrated_time_data);
hold on;
plot(t,integrated_time_data_analytical,'-r');
But this produces wrong results. What is wrong?
1 comentario
Antonio Leanza
el 13 de Mzo. de 2023
In this code the detrendization via high pass filtering is missing.
Respuestas (3)
Star Strider
el 25 de Jun. de 2014
You did not say what was wrong about the amplitude. I did not run that code, but see if changing the freq_data line to:
freq_data = (fftshift(fft(data)/length(data)));
solves the problem.
2 comentarios
Star Strider
el 25 de Jun. de 2014
That may be required, since according to the ifft documentation, it also normalizes by dividing the computed ifft by the length of the argument.
Antonio Leanza
el 13 de Mzo. de 2023
Editada: Antonio Leanza
el 13 de Mzo. de 2023
The original code works well regarding that line.
Michael
el 27 de Ag. de 2014
Hekseli,
You sometimes need to perform a high pass filter on your data when you convert it from acceleration to position. That should get rid of any low frequency drift you see in your results.
0 comentarios
Ver también
Categorías
Más información sobre Fourier Analysis and Filtering en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!