from the conic equation
    2 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
    Sebahattin Bektas
 el 15 de Jul. de 2014
  
    
    
    
    
    Comentada: Rena Berman
    
 el 11 de Sept. de 2023
            given an equation
 A*x^2+B*y^2+C*z^2+ D*x*y + D*x*z + F*y*z -1=0
how do I extract the center [x0,y0,z0], the axes lengths [a,b,c], and the rotation angles [ex,ey,ez] of the ellipsoid that it describes....
2 comentarios
  Matt J
      
      
 el 17 de Jul. de 2014
				Not sure why you edited your original question. This version is much less clear. The original question was, given an equation
 A*x^2+B*y^2+C*z^2+ D*x*y + D*x*z + F*y*z -1=0
how do I extract the center [x0,y0,z0], the axes lengths [a,b,c], and the rotation angles [ex,ey,ez] of the ellipsoid that it describes.
Respuesta aceptada
  Matt J
      
      
 el 15 de Jul. de 2014
        
      Editada: Matt J
      
      
 el 15 de Jul. de 2014
  
      Rewrite in matrix form
   [x-x0,y-y0,z-z0]*Q*([x-x0;y-y0;z-z0])=1
where Q=[A,D,E;D,B,F;E,F,C]. The eigen-decomposition of Q will be
    Q=R*diag(1./[a,b,c])*R.'
where columns of the rotation matrix R are the axes of the ellipsoid. You will have to choose between one of many possible decompositions of R into Euler angles [ex,ey,ez]
0 comentarios
Más respuestas (0)
Ver también
Categorías
				Más información sobre Geometric Transformation and Image Registration en Help Center y File Exchange.
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


