Solving two systems of DEs using the ode45 function.

23 visualizaciones (últimos 30 días)
Vassil Botev
Vassil Botev el 22 de Jul. de 2014
Comentada: Vassil Botev el 23 de Jul. de 2014
I am trying to solve two systems of differential equations in variables x1, x2, x3 using the ode45 function. The equations are given below:
dx1=-2*lambda*beta*x1+2*lambda*alpha*x2+lambda^2*sigma^2;
dx2=beta*x1-(alpha+lambda*beta)*x2+lambda*alpha*x3;
dx3=2*beta*x2-2*alpha*x3;
where alpha=alpha0+alpha1*t and beta=beta0+beta1*t and alpha0, alpha1, beta0, beta1, sigma, lambda are known constants.
The values I am trying to find are X1, X2 and X3. The derivatives of these desired values are given by:
dX1=beta*x1;
dX2=alpha*x2;
dX3=x3;
I am having difficulties implementing the above using the ode45 function given that the problem is defined by two sets of simultaneous differential equations. Any suggestions as to how this can be solved would be much appreciated. Thanks.

Respuesta aceptada

Mischa Kim
Mischa Kim el 23 de Jul. de 2014
Vassil, check out
function my_ode()
alpha0 = 1;
alpha1 = 1;
beta0 = 1;
beta1 = 1;
lambda = 1;
sigma = 1;
param = [alpha0; alpha1; beta0; beta1; lambda; sigma];
[t,X] = ode45(@EOM,[0 5],[1 2 3 4 5 6],[],param);
plot(t,X(:,1))
grid
end
function dX = EOM(t,x,param)
x1 = x(1);
x2 = x(2);
x3 = x(3);
alpha0 = param(1);
alpha1 = param(2);
beta0 = param(3);
beta1 = param(4);
lambda = param(5);
sigma = param(6);
alpha = alpha0+alpha1*t;
beta = beta0+beta1*t;
dx1 = -2*lambda*beta*x1+2*lambda*alpha*x2+lambda^2*sigma^2;
dx2 = beta*x1-(alpha+lambda*beta)*x2+lambda*alpha*x3;
dx3 = 2*beta*x2-2*alpha*x3;
dX1 = beta*x1;
dX2 = alpha*x2;
dX3 = x3;
dX = [dx1; dx2; dx3; dX1; dX2; dX3];
end

Más respuestas (0)

Categorías

Más información sobre Numerical Integration and Differential Equations en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by