How can I use the Lasso to apply to Logistic Regression?
33 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Cheng-Yu Hsieh
el 29 de Ag. de 2021
Respondida: Kumar Pallav
el 2 de Sept. de 2021
I am trying to apply supervised binary classification problem with the help of lasso to prevent overfitting. But I am stuck at how to apply lasso to logistic classification function, and how to predict the response values.
Below is the code, where:
- grpTrain_Lasso: a vector of values 1's & 2's, representing 2 categories.
- grpTrain_Lasso_categorical: containing 2 categories: "Cancer", "Normal".
- grpTrain: Original categorical vector, containing the diagnosis of each patient. ("Cancer", "Normal")
- obsSmall: 195x100, where columns are # of patients records, rows are # of features variables.
Lasso Embedded Model Training
[grpTrain_Lasso grpTrain_Lasso_categorical] = grp2idx(grpTrain)
lModel = lasso(obsSmall, grpTrain_Lasso, "CV", 20)
% column: predictor
% row: lambda value for each parameter (for the predictor)
Respuesta aceptada
Más respuestas (0)
Ver también
Categorías
Más información sobre Statistics and Machine Learning Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!