how to write to solve this type of system of equations ?

2 visualizaciones (últimos 30 días)
NIRUPAM SAHOO
NIRUPAM SAHOO el 11 de Sept. de 2021
Comentada: NIRUPAM SAHOO el 12 de Sept. de 2021

Respuestas (2)

Wan Ji
Wan Ji el 12 de Sept. de 2021
Hey friend
Just expand the left items of the two equations, extract u'' and v'', then an ode45 solver is there for you.

Walter Roberson
Walter Roberson el 12 de Sept. de 2021
Editada: Walter Roberson el 12 de Sept. de 2021
I was not able to figure out what is being raised to 10/9 . I used squiggle instead.
syms u(r) v(r)
syms N squiggle real
assume(r, 'real')
du = diff(u);
dv = diff(v);
left1 = diff(r^(N-1)*du^3)
left1(r) = 
right1 = r^(N-1) * sqrt(u) * sqrt(v) / (3*r^(2/3) * sqrt(1 + 9*squiggle^(10/9)/(10*(3*N-2)^(1/3))))
right1(r) = 
left2 = diff(r^(N-1)*dv^3)
left2(r) = 
right2 = r^(N-1) * u * v / (3*r^(2/3))
right2(r) = 
eqn1 = left1 == right1
eqn1(r) = 
eqn2 = left2 == right2
eqn2(r) = 
ic = [u(0) == 1, v(0) == 1, du(0) == 0, dv(0) == 0]
ic = 
sol = dsolve([eqn1, eqn2, ic])
Warning: Unable to find symbolic solution.
sol = [ empty sym ]
string(eqn1)
ans = "3*r^(N - 1)*diff(u(r), r)^2*diff(u(r), r, r) + r^(N - 2)*(N - 1)*diff(u(r), r)^3 == (r^(N - 1)*u(r)^(1/2)*v(r)^(1/2))/(3*r^(2/3)*((9*squiggle^(10/9))/(10*(3*N - 2)^(1/3)) + 1)^(1/2))"
string(eqn2)
ans = "3*r^(N - 1)*diff(v(r), r)^2*diff(v(r), r, r) + r^(N - 2)*(N - 1)*diff(v(r), r)^3 == (r^(N - 1)*u(r)*v(r))/(3*r^(2/3))"
string(ic)
ans = 1×4 string array
"u(0) == 1" "v(0) == 1" "subs(diff(u(r), r), r, 0) == 0" "subs(diff(v(r), r), r, 0) == 0"
Lack of a symbolic solution means that you would have to do numeric solutions -- but you cannot do a numeric solution to infinity, and you certainly would not get a formula out of it.
  5 comentarios
NIRUPAM SAHOO
NIRUPAM SAHOO el 12 de Sept. de 2021
i try wait for some time.
NIRUPAM SAHOO
NIRUPAM SAHOO el 12 de Sept. de 2021
syms p(t) m(t) t Y
Eqns = [diff((t^(100-1))*(diff(p(t),t))) == (t^(100-1))*(t-1)*exp(t)*p(t)*m(t);
diff((t^(100-1))*(diff(m(t),t))) == (t^(100-1))*(t-1)*exp(t)*p(t)^(1/2)*m(t)^(1/2)]
[DEsys,Subs] = odeToVectorField(Eqns);
DEFcn = matlabFunction(DEsys, 'Vars',{t,Y});
tspan = [0,100];
y0 = [0 0 0 0];
[t,Y] = ode45(DEFcn, tspan, y0);
plot(t,Y)
## i write this but the graph does not shows . please help me

Iniciar sesión para comentar.

Categorías

Más información sobre Ordinary Differential Equations en Help Center y File Exchange.

Productos


Versión

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by