How to solve single non-linear equation?
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
ISHA ARORA
el 21 de Sept. de 2021
Comentada: ISHA ARORA
el 24 de Sept. de 2021
Can anyone please help in solving the following equation:
d/dt[V.(X/1-X)]= An-Ax-Bx
where, V and X are function of t.
A,B, and n are constants
2 comentarios
Walter Roberson
el 21 de Sept. de 2021
Is that intended to be
Respuesta aceptada
Walter Roberson
el 21 de Sept. de 2021
syms A B n X(t) V(t)
eqn = diff(V(t) .* X(t)/(1-X(t)), t) == A*n - A*X(t) - B*X(t)
SE = simplify(lhs(eqn) - rhs(eqn))
collect(SE, X(t))
dsolve(ans)
You do not have a single linear equation. You are taking the derivative of a multiple of function V and function X and that is something that cannot be resolved by itself.
3 comentarios
Walter Roberson
el 22 de Sept. de 2021
Please confirm that what you are taking the derivative of on the left side is the product of two unknown functions in t.
If so, then my understanding is the situation cannot be resolved -- in much the same way that you cannot solve a single equation in two variables except potentially down to finding a relationship between the variables.
In some cases it can be resolved. For example, if V(t) is known to be linear
syms A B n X(t) V(t) C2 C1 C0
V(t) = C1*t + C0
eqn = diff(V(t) .* X(t)/(1-X(t)), t) == A*n - A*X(t) - B*X(t)
SE = simplify(lhs(eqn) - rhs(eqn))
col = collect(SE, X(t))
sol = simplify(dsolve(col))
... which is independent of time. Extending V(t) to quadratic gives you a situation dsolve() is not able to resolve.
Más respuestas (0)
Ver también
Categorías
Más información sobre Calculus en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!






