How to increase the performance of a cycle for in its use in large matrices?
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Ricardo Duarte
el 30 de Sept. de 2021
Comentada: Ricardo Duarte
el 30 de Sept. de 2021
Dear all,
I have four matrices NewZ(1x20), Longitude(1000x1), Latitude(1000x1) and depthgrid(1000x1000). Note that depthgrid represents the depths in the spatial grid (longitude, latitude). Note also that B is a 1000 x 1000 x 20 matrix that corresponds to the SPL values in the spatial grid along 20 different depths.
I need to check every point of the depthgrid in order to calculate the SPL mean of the points along the longitude x latitude points that are lower than a specific depth (in NewZ matrix).
This is a code I wrote for this purpose:
A=zeros(size(depthgrid));
for i=1:length(longitude);
for j=1:length(latitude);
FINDLOWERS=find(-NewZ<depthgrid(i,j));
BMEDIA=mean(B(:,:,min(FINDLOWERS):max(FINDLOWERS)),3); %To calculate the mean of a cat matrix
A(i,j)=(BMEDIA(i,j)); %place the point into the matrix A
end
end
This works, however it takes me six hours to do the calculations. So, my question is: is it possible to perform a faster checking? Two consecutive for cycles are very uneficient. What should I do?
Thank you very much for your help.
0 comentarios
Respuesta aceptada
Jan
el 30 de Sept. de 2021
Editada: Jan
el 30 de Sept. de 2021
Why do you calculate the mean of the complete BMEDIA matrix, if you use the output for the element (i,j) only?
A = zeros(size(depthgrid));
for i = 1:length(longitude)
for j = 1:length(latitude)
F = find(-NewZ<depthgrid(i,j));
A(i,j) = mean(B(i,j, min(F):max(F)),3);
end
end
mean() is not really efficient. Try this:
A = zeros(size(depthgrid));
for i = 1:length(longitude)
for j = 1:length(latitude)
F = find(-NewZ<depthgrid(i,j));
F1 = F(1);
F2 = F(numel(F));
A(i,j) = sum(B(i,j, F1:F2), 3) / (F2 - F1 + 1);
end
end
Alternatively:
A = zeros(size(depthgrid));
N = zeros(size(depthgrid));
BB = reshape(BB, [], size(B, 3));
nNewZ = -NewZ;
for k = 1:numel(NewZ) - 1
index = (nNewZ(k) <= depthgrid < nNewZ(k+1));
A(index) = A(index) + BB(index, k);
N(index) = N(index) + 1;
end
A = A ./ N;
There is an indexing problem in this version, therefore I assume the result is not correct yet. Without matching input arguments I cannot debug it currently. Try to fix this code by your own.
2 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Matrix Indexing en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!